Khai triển và rút gọn các biểu thức (với x và y không âm)
a) \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
b) \(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)\)
c) \(\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)\)
d) \(\left(x+\sqrt{y}\right)\left(x^2+y-x\sqrt{y}\right)\)
1. Khẳng định nào sau đây là đúng?
a, \(3\sqrt{5}=\sqrt{30}\) ; b, \(-3\sqrt{5}=-\sqrt{30}\) ; c, \(-3\sqrt{5}=-\sqrt{45}\) ; d, \(-3\sqrt{5}=\sqrt{45}\);
2. Khẳng định nào sau đây là sai?
a, \(\sqrt{\left(-3\right)^2}.5=-3\sqrt{5}\) b, \(\sqrt{3^2.5}=3\sqrt{5}\)
c, \(\sqrt{9x^2}=-3x\) với x≤0 c, \(\sqrt{\left(x-3\right)^2}=3-x\) với x≤3
3. Khoanh vào chữ đặt trước câu trả lời đúng:
Giá trị của biểu thức \(\dfrac{1}{\sqrt{3}+\sqrt{2}}\) \(\dfrac{1}{\sqrt{3}-\sqrt{2}}\) bằng:
a, 0 ; b, 4 ; c, 2\(\sqrt{2}\) ; d, \(-2\sqrt{2}\)
4. Khoanh vào chữ đặt trước câu trả lời đúng:
Trục căn thức ở mẫu của \(\dfrac{\sqrt{17}}{4+\sqrt{17}}\) ta được:
a, 4 ; b, \(\dfrac{1}{4}\) ; c, \(\sqrt{17}\left(4-\sqrt{17}\right)\) ; d, \(\sqrt{17}\left(\sqrt{17}-4\right)\)
5. Rút gọn các biểu thức (giả sử các biểu thức đều có nghĩa);
a, \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}\) ; b, \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c, \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\) ; c, \(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}\)
Khai triển và rút gọn các biểu thức (với x, y không âm)
a) \(\left(4\sqrt{x}-\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b) \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
Khai triển và rút gọn biểu thức (với x và y > 0):
a)\(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
b)\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
c)\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
rút gọn các biểu thức
a) \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}\)
b) \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c)(a-b)\(\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\)
d)\(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}\)
Khai triển và rút gọn biểu thức ( x ≥ 0, y ≥ 0 )
a, \(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
b, \(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+y\right)\)
c, \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
\(\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x+1}}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(\dfrac{\sqrt{x-2\sqrt{x-1}+}\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}\)
\(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
Mí bạn giải giúp mik bài này nhé!:))))))))))))))))))))))))))))))ARIGATO MÍ BẠN NHIW!!!!!!!!!!:)))))))))))))))))))))))))))))))))
Phân tích các đa thức sau thành nhân tử:
a) \(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}\) b) \(\sqrt{1-a}+\sqrt{1-a^2}\) với -1< a <1
c) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\) với a > 0, b > 0
d) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\) với x > 0, y > 0
CM:
\(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{6}}{6}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}+\sqrt{y}}=x-y\) với x.0, y>0, x≠y
\(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{x}}{y-\sqrt{xy}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)với x>0, y>0, x≠y