Khai triển \({\left( {3x - 2y} \right)^2}\)
\(\left(3x^2-2y\right)^3\)
\(\left(2x+y^2\right)^3\)
Khai triển HĐT
\(\left(3x^2-2y\right)^3=27x^6-54x^4y+36x^2y^2-8y^3\)
Khai triển
a) \(\left(2x-5y\right)^2\)
b) \(\left(3x+2y\right)^2\)
c) \(\left(3x+4y\right)\left(4y-3x\right)\)
Lời giải:
a. $=(2x)^2-2.2x.5y+(5y)^2=4x^2-20xy+25y^2$
b. $=(3x)^2+2.3x.2y+(2y)^2=9x^2+12xy+4y^2$
c. $=(4y+3x)(4y-3x)=(4y)^2-(3x)^2=16y^2-9x^2$
\(a.4x^2-10xy+25y^2\)
\(b.9x^2+6xy+4y^2\)
\(c.16y^2-9x^2\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
Giải:
a) \(\left(3x^2-2y^3\right)^2\)
\(=\left(3x^2\right)^2-2.3x.2y+\left(2y^3\right)^2\)
\(=9x^4-12xy+4y^6\)
Vậy ...
b) \(\left(-2x^2-3\right)^2\)
\(=\left(-2x^2\right)^2-2.2x^2.3+3^2\)
\(=4x^4-12x^2+9\)
Vậy ...
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
a) \(\left(3x^2-2y^3\right)^2\)
\(=\left(3x^2\right)^2-2\cdot3x^2\cdot2y^3+\left(2y^3\right)^2\)
\(=9x^4-12x^2y^3+4y^6\)
b) \(\left(-2x^2-3\right)^2\)
\(=\left(-2x^2\right)^2-2\cdot\left(-2x^2\right)\cdot3+3^2\)
\(=4x^4+12x^2+9\)
Khai triển các hằng đẳng thức sau:
\(a,\left(x^2+2xy\right)^3\)
\(b,\left(3x^2-2y\right)^3\)
\(c,\left(2x^3-y^2\right)^3\)
a,\(\left(x^2+2xy\right)^3=\left(x^2\right)^3+3.\left(x^2\right)^2.2xy+3.\left(2xy\right)^2.x^2+\left(2xy\right)^3\)
\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)
b,\(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.\left(2y\right)^2.3x^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36y^2x^2-8y^3\)
c,\(\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)
Khai triển các biểu thức sau
a) \({\left( {x - 2} \right)^4}\)
b) \({\left( {x + 2y} \right)^5}\)
a) \({\left( {x - 2} \right)^4}\)
\(\begin{array}{l} = {x^4} + 4{x^3}.\left( { - 2} \right) + 6{x^2}.{\left( { - 2} \right)^2} + 4x{\left( { - 2} \right)^3} + {\left( { - 2} \right)^4}\\ = {x^4} - 8{x^3} + 24{x^2} - 32x + 16\end{array}\)
b) \({\left( {x + 2y} \right)^5}\)
\(\begin{array}{l} = {x^5} + 5.{x^4}.\left( {2y} \right) + 10.{x^3}.{\left( {2y} \right)^2} + 10.{x^2}.{\left( {2y} \right)^3} + 5.x.{\left( {2y} \right)^4} + 1.{\left( {2y} \right)^5}\\ = {x^5} + 10{x^4}y + 40{x^3}{y^3} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}\end{array}\)
Khai triển các hằng đẳng thức sau:
\(a,\left(x^2+2xy\right)^3\)
\(b,\left(3x^2-2y\right)^3\)
\(c,\left(2x^3-y^2\right)^3\)
a) \(\left(x^2+2xy\right)^3\)
\(=\left(x^2\right)^3+3\left(x^2\right)^22xy+3x^2\left(2xy\right)^2+\left(2xy\right)^3\)
\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)
b) \(\left(3x^2-2y\right)^3\)
\(=\left(3x^2\right)^3-3\left(3x^2\right)^22y+3.3x^2\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)
c) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\left(2x^3\right)^2y^2+3.2x^3\left(y^2\right)^2-\left(y^2\right)^3\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6.\)
Câu 1: Biết \(3x+2\left(5-x\right)=0\), giá trị của x là:
Câu 2: Giá trị của x thỏa mãn: \(2x.\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) là:
Câu 3: Tính: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) bằng:
Câu 4: Tính và thu gọn: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
Câu 5: Biểu thức rút gọn và khai triển của R=\(\left(2x-3\right).\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\) là:
Câu 1: \(3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\).
Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)
\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)
\(\Rightarrow-3\left(x-7\right)=3\)
\(\Rightarrow x-7=-1\)
\(\Rightarrow x=6.\)
Câu 3:
Áp dụng hằng đẳng thức mở rộng có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+b^3+c^3-3abc.\)
Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)
\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)
\(=-6x^2y^2+4y^3.\)
Câu 5:
Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)
\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)
\(=12x^2-10x-12-24x+12x^2+12-6x\)
\(=24x^2-40x.\)
Câu1:
\(3x+2\left(5-x\right)=0\)
\(\Leftrightarrow3x+10-2x=0\)
\(\Leftrightarrow x=-10\)
Câu 2:
\(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
\(\Leftrightarrow2x\left(5-3x+3x-5\right)-3x-21=3\)
\(\Leftrightarrow-3x=24\)
\(\Rightarrow x=-8\)
câu 3:
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3a^2b-3ab^2-3abc\)\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)\(=a^3+b^2+c^3-3abc\)
Câu 4:
\(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=\left(3x^2-2y^2\right)\left(3x^2-3x^2-2y^2\right)\)
\(=-2y^2\left(3x^2-2y^2\right)\)
Câu 5:
\(\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)
\(=\left(2x-3\right)2\left(2+3x\right)-3\left(2-x\right)2\left(2x-1\right)\)
\(=2\left(4x^2-9\right)-6\left(3x-2-2x^2\right)\)
\(=8x^2-18-18x+12+12x^2\)
\(=20x^2-18x-6\)
khai triển các biểu thức sau:
\(a.\left(2x+3y\right)^2\)
\(b.2\left(\dfrac{1}{2}x^2+y\right)\left(x^2-2y\right)\)
\(c.\left(x+y+z\right)^2\)
a. (2x+3y)2= (2x)2+2.2x.3y+(3y)2
=4x2+12xy+9y2
b. 2(\(\dfrac{1}{2}\)x2+y)(x2-2y)
=(x2+2y)(x2-2y)
=x4-4y2
c, (x+y+z)2= [(x+y)+z]2
=(x+y)2+2(x+y)z+z2
=x2+2xy+y2+2xz+2yz+z2
=x2+y2+z2+2xy+2yz+2xz