2x^2+9y^2+9=8x+6y
2x^2+9y^2+9=8x+6y
\[
2x^2 + 9y^2 + 9 - 8x - 6y = 0
\]
\[
2x^2 - 8x + 9y^2 - 6y + 9 = 0
\]
\[
(2x^2 - 8x) + (9y^2 - 6y) + 9 = 0
\]
a) Phân tích hạng tử \( 2x^2 - 8x \)
- Ta có thể đặt \( 2 \) ra ngoài:
\[
2(x^2 - 4x)
\]
- Tiếp tục hoàn thành bình phương:
\[
x^2 - 4x = (x - 2)^2 - 4
\]
- Vậy:
\[
2(x^2 - 4x) = 2((x - 2)^2 - 4) = 2(x - 2)^2 - 8
\]
b) Phân tích hạng tử \( 9y^2 - 6y \)
- Đặt \( 3 \) ra ngoài:
\[
9(y^2 - \frac{2}{3}y) = 9(y^2 - \frac{2}{3}y)
\]
- Hoàn thành bình phương:
\[
y^2 - \frac{2}{3}y = \left(y - \frac{1}{3}\right)^2 - \frac{1}{9}
\]
- Vậy:
\[
9(y^2 - \frac{2}{3}y) = 9\left(\left(y - \frac{1}{3}\right)^2 - \frac{1}{9}\right) = 9\left(y - \frac{1}{3}\right)^2 - 1
\]
\[
2((x - 2)^2 - 4) + 9\left(y - \frac{1}{3}\right)^2 - 1 + 9 = 0
\]
\[
2(x - 2)^2 - 8 + 9\left(y - \frac{1}{3}\right)^2 + 8 = 0
\]
\[
2(x - 2)^2 + 9\left(y - \frac{1}{3}\right)^2 = 0
\]
- Ta thấy rằng \( 2(x - 2)^2 \geq 0 \) và \( 9\left(y - \frac{1}{3}\right)^2 \geq 0 \).
- Do đó, cả hai hạng tử đều bằng 0:
\[
2(x - 2)^2 = 0 \quad \Rightarrow \quad x - 2 = 0 \quad \Rightarrow \quad x = 2
\]
\[
9\left(y - \frac{1}{3}\right)^2 = 0 \quad \Rightarrow \quad y - \frac{1}{3} = 0 \quad \Rightarrow \quad y = \frac{1}{3}
\]
nếu đây là bài nghiệm phương trình thì giải thế này nhé!
a,(x+2)^2 b, (-2xy+3)^2 c,(x^2y+3x)^2 d, (x+y+z)^2
`a)(x+2)^2`
`=x^2+2*x*2+2^2`
`=x^2+4x+4`
`b)(-2xy+3)^2`
`=(-2xy)^2+2*(-2xy)*3+3^2`
`=4x^2y^2-12xy+9`
`c)(x^2y+3x)^2`
`=(x^2y)^2+2*x^2y*3x+(3x)^2`
`=x^4y^2+6x^3y+9x^2`
`d)(x+y+z)^2`
`=[(x+y)+z)^2`
`=(x+y)^2+2(x+y)z+z^2`
`=x^2+2xy+y^2+2xz+2yz+z^2`
a: \(\left(x+2\right)^2\)
\(=x^2+2\cdot x\cdot2+2^2\)
\(=x^2+4x+4\)
b: \(\left(-2xy+3\right)^2\)
\(=\left(-2xy\right)^2+2\cdot\left(-2xy\right)\cdot3+3^2\)
\(=4x^2y^2-12xy+9\)
c: \(\left(x^2y+3x\right)^2\)
\(=\left(x^2y\right)^2+2\cdot x^2y\cdot3x+\left(3x\right)^2\)
\(=x^4y^2+6x^3y+9x^2\)
d: \(\left(x+y+z\right)^2\)
\(=\left(x+y\right)^2+2z\left(x+y\right)+z^2\)
\(=x^2+y^2+z^2+2xy+2xz+2yz\)
a,(x-1)^2 b,(1/2x-3y)^2 c,(2x^2-1)^2 d,(x-2y-1)^2
`a)(x-1)^2`
`=x^2-2*x*1+1^2`
`=x^2-2x+1`
`b)(1/2x-3y)^2`
`=(1/2x)^2-2*1/2x*3y+(3y)^2`
`=1/4x^2-3xy+9y^2`
`c)(2x^2-1)^2`
`=(2x^2)^2-2*2x^2*1+1^2`
`=4x^4-4x^2+1`
`d)(x-2y-1)^2`
`=(x-2y)^2-2*(x-2y)*1+1^2`
`=x^2-4xy+4y^2-2x+4y+1`
a: \(\left(x-1\right)^2=x^2-2x+1\)
b: \(\left(\dfrac{1}{2}x-3y\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot3y+\left(3y\right)^2\)
\(=\dfrac{1}{4}x^2-3xy+9y^2\)
c: \(\left(2x^2-1\right)^2\)
\(=\left(2x^2\right)^2-2\cdot2x^2\cdot1+1^2\)
\(=4x^4-4x^2+1\)
d: \(\left(x-2y-1\right)^2\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)+1\)
\(=x^2-4xy+4y^2-2x+4y+1\)