Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
22 tháng 7 2023 lúc 8:28

`a)`

`3x(2xy - 5x^2y)`

`= 3x*2xy + 3x* (-5x^2y)`

`= 6x^2y - 15x^3y`

`b)`

`2x^2y (xy - 4xy^2 + 7y)`

`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c)`

`(-2/3xy^2 + 6yz^2)*(-1/2xy)`

`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:26

`a, 3x(2xy-5x^2y)`

`= 6x^2y - 15x^3y`

`b, 2x^2y(xy-4xy^2+7y)`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

Sách Giáo Khoa
Xem chi tiết
Lê Thiên Anh
19 tháng 4 2017 lúc 21:57

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3



Hiiiii~
19 tháng 4 2017 lúc 21:57

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3


Ngáo Nu
19 tháng 4 2017 lúc 22:35

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3

LUU HA
Xem chi tiết
Đặng Ngọc Quỳnh
19 tháng 9 2020 lúc 19:11

Với \(x\ge0;y\ge0\). Ta có:

\(\frac{x+y}{2}\ge\sqrt{xy}\)( Bất đẳng thức Cauchy cho 2 số không âm)

Và như vậy:

\(A=\left(\left|\sqrt{xy}+\frac{x+y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x+y}{2}\right|-\left|y\right|\right)\)

\(=\left(\sqrt{xy}+\frac{x+y}{2}-x\right)+\left(\frac{x+y}{2}-\sqrt{xy}-y\right)=0\)

Khách vãng lai đã xóa
LUU HA
20 tháng 9 2020 lúc 20:49

Nhưng tích \(xy\ge0\)

Khách vãng lai đã xóa
Minh  Ánh
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

BuBu siêu moe 방탄소년단
Xem chi tiết
Akai Haruma
7 tháng 10 2021 lúc 8:36

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

Lyzimi
Xem chi tiết
Mỹ Lệ
Xem chi tiết
vung nguyen thi
Xem chi tiết
Nguyễn Huy Thắng
14 tháng 11 2017 lúc 22:21

Đặt S=x+y;P=xy giải ra :V

Nguyễn Thị Ngọc Hân
Xem chi tiết