\(\sqrt{X+2}\)+\(\sqrt{16x+32}\)-\(\sqrt{4x+8}\)=12 tìm x
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......
Tìm điều kiện có nghĩa:
1) \(\sqrt{16x^2-25}\)
2) \(\sqrt{4x^2-49}\)
3) \(\sqrt{8-x^2}\)
4)\(\sqrt{x^2-12}\)
5) \(\sqrt{x^2+4}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) ĐKXĐ: \(16x^2-25\ge0\)
\(\Leftrightarrow x^2\ge\dfrac{25}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{4}\\x\le-\dfrac{5}{4}\end{matrix}\right.\)
2) ĐKXĐ: \(4x^2-49\ge0\Leftrightarrow x^2\ge\dfrac{49}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{7}{2}\\x\le-\dfrac{7}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(8-x^2\ge0\Leftrightarrow x^2\le8\)
\(\Leftrightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)
4) ĐKXĐ: \(x^2-12\ge0\Leftrightarrow x^2\ge12\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\sqrt{3}\\x\le-2\sqrt{3}\end{matrix}\right.\)
5) ĐKXĐ: \(x^2+4\ge0\left(đúng\forall x\right)\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
Bài 1: Tìm x
a/\(\sqrt{1-4x+4x^2}\)+5=x-2
b/\(3\sqrt{12+4x}\)+\(\dfrac{4}{7}\sqrt{147+49x}\)=\(\dfrac{3}{2}\sqrt{48+16x}\)+4
`a)sqrt{1-4x+4x^2}+5=x-2`
`<=>\sqrt{(2x-1)^2}=x-2-5`
`<=>|2x-1|=x-7(x>=7)`
`<=>[(2x-1=x-7),(2x-1=7-x):}`
`<=>[(x=-6(ktm)),(3x=8):}`
`<=>x=8/3(ktm)`
Vậy PTVN
`b)3sqrt{12+4x}+4/7sqrt{147+49x}=3/2sqrt{48+16x}+4(x>=-3)`
`<=>6sqrt{x+3}+4sqrt{x+3}=6sqrt{x+3}+4`
`<=>4sqrt{x+3}=4`
`<=>sqrt{x+3}=1<=>x+3=1`
`<=>x=-2(tm)`
Vậy `S={-2}`
a) \(\sqrt{1-4x+4x^2}+5=x-2\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\Leftrightarrow\left|1-2x\right|=x-7\left(1\right)\)TH1: \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow1-2x=x-7\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)(không thỏa đk)
TH2: \(1-2x< 0\Leftrightarrow x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2x-1=x-7\Leftrightarrow x=-6\)(không thỏa đk)
Vậy \(S=\varnothing\)
b) \(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}=6\sqrt{3+x}+4\Leftrightarrow4\sqrt{3+x}=4\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\)
a. \(\sqrt{1-4x+4x^2}+5=x-2\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\)
\(\Leftrightarrow\left|1-2x\right|-x=-7\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x-x=-7\\2x-1-x=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\x=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-6\end{matrix}\right.\)
b. ĐKXĐ: \(x\ge-3\)
\(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\)
\(\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}-6\sqrt{3+x}=4\)
\(\Leftrightarrow4\sqrt{3+x}=4\) \(\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\) ( thỏa mãn đk )
Tìm max \(A=\frac{x^4+x+1+32\sqrt[4]{x^3-4x^2+7x-12}}{x^4+x^2+16x-11}\)
Giải phương trình:
1, \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
2, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
3, \(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 2\sqrt{x-2}=8$
$\Leftrightarrow \sqrt{x-2}=4$
$\Leftrightarrow x=4^2+2=18$ (tm)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
tìm x:\(\sqrt{2-x}\)-\(\sqrt{18-9x}\)+\(\sqrt{32-16x}\)=16
Đk: 2-x ≥ 0 hay x ≤ 2
Đặt \(\sqrt{2-x}=t\) với t ≥ 0
PT tương đương
t -3t+ 4t = 16
\(\Leftrightarrow\)2t = 16
\(\Rightarrow\) t = 8 (TMĐK)
Vậy \(\sqrt{2-x}=8\)
2 - x = 64
vậy x = -62
\(\sqrt{16x-64}-12\sqrt{\dfrac{x-4}{4}}+2\sqrt{4x-16}=6\)
\(\Leftrightarrow\sqrt{x-4}\left(4-12\cdot\dfrac{1}{2}+2\cdot2\right)=6\)
=>x-4=9
hay x=13