Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:53

Câu 2: 

Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:55

Câu 1: 

Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=1\)

Đặng Thiên Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 20:32

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)

\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-a+4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3\sqrt{a}\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

9A Lớp
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 22:45

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 7:21

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

KYAN Gaming
Xem chi tiết
Lê Đình Hiếu
26 tháng 7 2021 lúc 21:01

A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:17

Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

Nguyễn Khánh Nhi
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 15:30

ĐK: \(x>0;a\ne1\)

\(\left(\dfrac{\sqrt{a}-2}{a-1}-\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right)\left(1+\dfrac{1}{\sqrt{a}}\right)\)

\(=\left[\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}\right].\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\dfrac{\sqrt{a}-2}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right).\dfrac{1}{\sqrt{a}}\)

\(=\left[\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right].\dfrac{1}{\sqrt{a}}\)

\(=\left[\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{a+\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right].\dfrac{1}{\sqrt{a}}\)

\(=\dfrac{-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\dfrac{1}{\sqrt{a}}\)

\(=\dfrac{-2}{a-1}\)

ILoveMath
31 tháng 8 2021 lúc 15:33

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne1\\a>0\end{matrix}\right.\)

\(\left(\dfrac{\sqrt{a}-2}{a-1}-\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right)\left(1+\dfrac{1}{\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}+\dfrac{1}{\sqrt{a}}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}\right).\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}-\dfrac{a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}\right).\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{a-\sqrt{a}-2-a+\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{-4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{-4}{\left(\sqrt{a}-1\right).\sqrt{a}.\left(\sqrt{a}+1\right)}\)

 

minh
Xem chi tiết
Nguyễn Đức Trí
26 tháng 8 2023 lúc 10:14

\(B=\left(\dfrac{1}{\sqrt[]{a}-1}-\dfrac{1}{\sqrt[]{a}}\right):\left(\dfrac{\sqrt[]{a}+1}{\sqrt[]{a}-2}-\dfrac{\sqrt[]{a}+2}{\sqrt[]{a}-1}\right)\left(1\right)\)

a) B xác định khi và chỉ khi :

\(\left\{{}\begin{matrix}a\ge0\\\sqrt[]{a}\ne0\\\sqrt[]{a}-1\ne0\\\sqrt[]{a}-2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) \(\left(1\right)\Leftrightarrow B=\left(\dfrac{\sqrt[]{a}-\left(\sqrt[]{a}-1\right)}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{\left(\sqrt[]{a}+1\right)\left(\sqrt[]{a}-1\right)-\left(\sqrt[]{a}+2\right)\left(\sqrt[]{a}-2\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{a-1-\left(a-4\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{3}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)

\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right).\left(\dfrac{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}{3}\right)\)

\(\Leftrightarrow B=\dfrac{\sqrt[]{a}-2}{3\sqrt[]{a}}\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:10

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

trần lê tuyết mai
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 23:02

ĐKXĐ: \(-1\le a< 1\)\(a\ne0\)

\(P=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}^2}{\sqrt{\left(1-a\right)\left(1+a\right)}-\sqrt{1-a}^2}\right).\left(\sqrt{\dfrac{\left(1-a\right)\left(1+a\right)}{a^2}}-\dfrac{1}{a}\right)\)

\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\sqrt{\dfrac{\left(1-a\right)\left(1+a\right)}{a^2}}-\dfrac{1}{a}\right)\)

\(=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{\left|a\right|}-\dfrac{1}{a}\right)\)

\(=\dfrac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{1+a-\left(1-a\right)}.\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{\left|a\right|}-\dfrac{1}{a}\right)\)

\(=\left(\dfrac{1+\sqrt{\left(1-a\right)\left(1+a\right)}}{a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{\left|a\right|}-\dfrac{1}{a}\right)\)

- Với \(a>0\)

\(\Rightarrow P=\dfrac{\left(\sqrt{1-a^2}+1\right)\left(\sqrt{1-a^2}-1\right)}{a^2}=\dfrac{1-a^2-1}{a^2}=-1\)

- Với \(a< 0\)

\(\Rightarrow P=-\dfrac{\left(1+\sqrt{1-a^2}\right)^2}{a^2}\)

Tài
Xem chi tiết