Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bờ Môi Quyến Rũ
Xem chi tiết
Akai Haruma
26 tháng 6 2019 lúc 21:22
Nguyễn Hiền Mai
Xem chi tiết
Akai Haruma
26 tháng 6 2019 lúc 21:15

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

Akai Haruma
26 tháng 6 2019 lúc 21:21

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......

8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:28

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

Đạt Kien
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Agatsuma Zenitsu
21 tháng 1 2020 lúc 18:54

\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)

Phương trình trên tương đương với:

\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)

Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)

Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)

Vậy ..................................

\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)

\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)

\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)

\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)

\(\sqrt{x}+\sqrt{1-x}=1\)

\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)

Vậy .............................

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Nguyễn Mạnh Hưng
Xem chi tiết
Trần Minh Trọng
Xem chi tiết
Lê Anh Khoa
20 tháng 1 2023 lúc 8:30

Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)

P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)

Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó : 

\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)

Với t = 4  hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ... 

 

Minh Hiếu
20 tháng 1 2023 lúc 8:41

Câu 1 bạn trên giải rồi mik k giải nx nha

2/ \(3\left(x^2+2\right)=10\sqrt{x^3+1}\)

\(3\left(x^2-x+1\right)+3\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b\ge0\end{matrix}\right.\)

pt⇔ \(3a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3b=b\\a=3b\end{matrix}\right.\)

Đến đây bạn tự giải tiếp nha

3/ \(\sqrt{3-3x}-\sqrt{3+x}=2\)

\(\left(\sqrt{3-3x}-3\right)-\left(\sqrt{3+x}-1\right)=0\)

\(\dfrac{-3\left(x+2\right)}{\sqrt{3-3x}+3}-\dfrac{x+2}{\sqrt{3+x}+1}=0\)

+) \(x=-2\left(TM\right)\)

+) \(x\ne-2\Rightarrow\dfrac{-3}{\sqrt{3-3x}+3}-\dfrac{1}{\sqrt{3+x}+1}=0\)

Vì VT<0 => ptvn

Lê Anh Khoa
20 tháng 1 2023 lúc 8:43

2 ) ĐK : \(x\ge-1\)

P/t \(\Leftrightarrow9\left(x^2+2\right)^2=100\left(x^3+1\right)\)

\(\Leftrightarrow9x^4+36x^2+36=100x^3+100\)

\(\Leftrightarrow9x^4-100x^3+36x^2-64=0\)

\(\Leftrightarrow\left(x^2-10x-8\right)\left(9x^2-10x+8\right)=0\)

\(\Leftrightarrow x^2-10x-8=0\) ( 9x^2 - 10x + 8 > 0 )

\(\Leftrightarrow x=5\pm\sqrt{33}\) ( t/m ) 

Vậy ...