Bài 1:
ĐK:...........
PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)
\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)
\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)
Thay vào PT(2) ta có:
\(x^2+16x-64=128\)
\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)
Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)
Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)
Vậy $(x,y)=(8,\pm 8)$
Bài 2:
Ta thấy:
\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)
\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)
Do đó:
\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)
Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)
Vậy.......