Giải thích với ạ
É ô ét ai giúp mình bài này với ạ, sẵn tiện giải thích cho mình với được ko ạ hiện giờ mình đang cần gấp lắm ạ mai mình thi rồi nên mong cao nhân nào giải bài với giải thích bài này cho mình với ạ
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}\) \(\dfrac{2^{11}.9^3}{3^5.16^2}\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
Ai giải giúp em với ạ... giải thích luôn ạ .Em cần gấp
Câu 1 giải sao vậy ạ :( mình làm mãi mà nó ko ra mn giải với giải thích cho mình với ạ mai mình thi cảm ơn ạ
Câu 1 này bình phương hơi dài dòng nên khử trị tuyệt đối sẽ tốt hơn:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-2x-3\ge0\\x^2-2x-3\ge3x-3\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-2x-3< 0\\-\left(x^2-2x-3\right)\ge3x-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge3\\x\le-1\end{matrix}\right.\\x^2-5x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}-1< x< 3\\x^2+x-6\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge3\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge5\\x\le0\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}-1< x< 3\\-3\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\\-1< x\le2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
Vậy C đúng
mọi người giúp em giải x với ạ ( mọi người ghi giải thích giúp e với ạ)
818=3x
`81^8=3^x`
`=>3^x=(3^4)^8`
`=>3^x=3^32`
`=>x=32`
Vậy `x=32`
\(81^8=3^x\)
\(\Leftrightarrow\left(3^4\right)^8=3^x\)
\(\Leftrightarrow3^{32}=3^x\)
\(\Leftrightarrow x=32\)
Các bạn giải và giải thích từng câu giúp mình với ạ. Cảm ơn ạ
Câu nào bạn, nếu mà cả thì đăng tách ra đi :)
Các bạn giải và giải thích từng câu giúp mình với ạ. Cảm ơn ạ
1.
\(sin^2x-4sinx.cosx+3cos^2x=0\)
\(\Rightarrow\dfrac{sin^2x}{cos^2x}-\dfrac{4sinx}{cosx}+\dfrac{3cos^2x}{cos^2x}=0\)
\(\Rightarrow tan^2x-4tanx+3=0\)
2.
\(\Leftrightarrow\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
3.
\(\Leftrightarrow2^2+m^2\ge1\)
\(\Leftrightarrow m^2\ge-3\) (luôn đúng)
Pt có nghiệm với mọi m (đề bài sai)
4.
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=1\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
6.
ĐKXĐ: \(cosx\ne0\)
Nhân 2 vế với \(cos^2x\)
\(sin^2x-4cosx+5cos^2x=0\)
\(\Leftrightarrow1-cos^2x-4cosx+5cos^2x=0\)
\(\Leftrightarrow\left(2cosx-1\right)^2=0\)
\(\Leftrightarrow cosx=\dfrac{1}{2}\Rightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
Các bạn giải và giải thích từng câu giúp mình với ạ. Cảm ơn ạ
6.
\(cos^2x+\sqrt{3}sinx.cosx-1=0\)
\(\Leftrightarrow-sin^2x+\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow sinx\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)=0\)
\(\Leftrightarrow sinx.sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sin\left(x-\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
7.
\(\sqrt{3}sinx-cosx=2\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=1\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
8.
\(sin4x+\sqrt{3}cos4x=2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin4x+\dfrac{\sqrt{3}}{2}cos4x=sinx\)
\(\Leftrightarrow sin\left(4x+\dfrac{\pi}{3}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\dfrac{\pi}{3}=x+k2\pi\\4x+\dfrac{\pi}{3}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\x=\dfrac{2\pi}{15}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
Ai giải thích từ chuồn chuồn giúp e với ạ
Giải thích nhé
LÀ CON CHUỒN CHUỒN CÒN GÌ NỮA .
chuồn chuồn = chuồn + chuônf
Các bạn giải và giải thích từng câu giúp mình với ạ. Mình cảm ơn ạ
12.
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)
\(\Rightarrow M=\sqrt{2}\)
13.
Pt có nghiệm khi:
\(5^2+m^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow2m\le24\)
\(\Rightarrow m\le12\)
14.
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=k2\pi\)
15.
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)
Đáp án A
16.
\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)
Có \(1008+1008=2016\) nghiệm
giải giúp em với ạ, chỉ cần giải thích rõ ràng dễ hiểu là được ạ
\(B_2=\left\{x;x=2k,k\in N\right\}\)
\(B_4=\left\{x;x=4m,m\in N\right\}\)
Do \(4m=2.\left(2m\right)\Rightarrow B_4\subset B_2\)
\(\Rightarrow B_2\cap B_4=B_4\)