2x_1-(x_1-x_2-x_1×x_2)
Tìm m để phương trình \(x^2-2\left(m+1\right)x+m^2+m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn:
a \(x_1+x_2=x_1x_2\)
b \(3\left(x_1+x_2\right)-2x_1.x_2=1\)
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+m\right)=m^2+2m+1-m^2-m\)
\(=m+1\)
pt có nghiệm x1,x2 \(< =>m+1\ge0< =>m\ge-1\)
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=m^2+m\end{matrix}\right.\)
a,\(=>2m+2=m^2+m< =>m^2-m-2=0\)
\(a-b+c=0=>\left[{}\begin{matrix}m1=-1\\m2=2\end{matrix}\right.\left(tm\right)\)
b,\(< =>3\left(2m+2\right)-2\left(m^2+m\right)-1=0\)
\(< =>-2m^2+4m+5=0\)
\(ac< 0\) pt có 2 nghiệm pbiet \(=>\left[{}\begin{matrix}m1=...\\m2=...\end{matrix}\right.\) thay số vào tính m1,m2 đối chiếu đk
phan tich:
\(2x_1\left(x_2-1\right)-x_2\left(x_1-2\right)=19\)bt: \(x_1+x_2=2m\),\(x_1.x_2=m^2-2m+3\)
Cho phương trình \(x^2-mx+2=0\) tìm m để phương trình có 2 nghiệm phân biệt để biểu thức \(\left(x_1+x_2\right)^4-17\left(x_1+x_2\right)^2x_1^2x_2^2-6\left(x_1+x_2\right)x_1^3x_2^3\)đạt giá trị nhỏ nhất
1) Cho pt \(3x^2+5x-6=0\) có 2 nghiệm \(x_1,x_2\) (không giải pt)
Tính giá trị biểu thức \(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\)
2) Cho pt \(3x^2-5x-3=0\) có nghiệm \(x_1,x_2\) ( không giải pt)
Tính giá trị biểu thức \(B=x^3_1.x_2+x_1.x^3_2\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19\\ \Leftrightarrow\left(5-2m-2x_1-x_2+2m-3\right)\left(5-2m-2x_2-x_1+2m-3\right)=19\)
Giải thích giúp em vì sao ạ :((
Chị cho e hệ thức Vi-ét của bài được hongg ạ?
\(x_1+x_2=2\left(m-1\right)\)( Vi-ét )
\(\rightarrow x_1+x_2=2m-2\)
\(\Leftrightarrow x_1-2m=-2-x_2\)
\(x_1^2-2mx_1=x_1\left(x_1-2m\right)=x_1\left(-2-x_2\right)=-2x_1-x_1x_2=-2x_1-\left(2m-5\right)=5-2m-2x_1\)
_ Phía sau tương tự với `x_2` nha chị uii_
Cho pt \(x^{^{ }2}-8x+m=0\). Tìm các giá trị của m để pt có hai nghiệm \(x_1,x_2\) thỏa mãn
a) \(2x_1+3x_2=6\) b) \(x_1=7x_2\) c) \(x_1-x_2=2\)
Moij người giúp mình với ạ mình đang cần gấp ạ
Cho x2-(m-2)x-3=0.Tìm m thỏa mãn
\(\left\{{}\begin{matrix}x_1>x_2\\\left|2x_1\right|-\left|x_2\right|=2+x_1\end{matrix}\right.\)
Cho phương trình \(x^2+6x+6m-m^2=0\). Tìm m để phương trình có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(x_1^3-x_2^3+2x_1^2+12x_1+72=0\).
\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0;\forall m\)
\(\Rightarrow\) Pt luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên: \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12\)
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(m^2-6m+36\right)+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)
\(\Leftrightarrow x_1-x_2+2=0\) (do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\))
Kết hợp với \(x_1+x_2=-6\) ta được:
\(\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)
Thế vào \(x_1x_2=6m-m^2\)
\(\Rightarrow8=6m-m^2\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)
Cho phương trình: $2x^2 - 5x - 3 = 0$ có hai nghiệm là $x_1$, $x_2$.
Không giải phương trình, hãy tính giá trị của biểu thức: $A = (x_1 + 2x_2)(x_2 + 2x_1)$.
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11