Cho 2 đa thức
A= 4x3- 3xy + x + 2
B= 3x3 - 3xy +3x -3
Chứng tỏ không có giá trị nào của biến x thõa mãn để 2 giá trị của 2 đa thức A và B bằng nhau
Cho 2 đa thức
A= 4x3- 3xy + x + 2
B= 3x3 - 3xy +3x -3
Chứng tỏ không có giá trị nào của biến x thõa mãn để 2 giá trị của 2 đa thức A và B bằng nhau
GIÚP MÌNH VỚI MAI THI RỒI!!!
Để A=B thì
4x3-3xy+x+2=3x3-3xy+3x-3
<=>x3-2x+5=0
Đề sai nè bấm máy tìm đc 1 giá trị của x
cho : M=6x^2+3xy-2y^2
N=3y^2-2x^2-3xy.
chứng minh không có giá trị của x và y để 2 đa thức trên cùng có giá trị âm
M+N
=6x^2+3xy-2y^2+3y^2-2x^2-3xy
=4x^2+y^2
x^2; y^2 >= 0
=> 4x^2 + y^2 >=0
do đó, có tối thiểu 1 số dương và 1 so âm. ko thể cùng âm được (đpcm)
Cho hai đa thức P=5x^2+6xy-y^2 và Q=2y^2-2x^2-6xy.Chứng minh rằng không có giá trị nào của x và y để hai đa thức P và Q cùng có giá trị âm
\(P+Q=5x^2+6xy-y^2+2y^2-2x^2-6xy=3x^2+y^2\ge0\forall x,y\)
Vậy P,Q không thể cùng có giá trị âm
cho phân thức: \(\dfrac{x^2-4x+4}{x^2-4}\)
a, Với giá trị nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại |x|=3
d, Tìm giá trị của x để giá trị của phân thức bằng 2
a, ĐKXĐ: x2-4≠0 ⇔ x≠±2
b, \(\dfrac{x^2-4x+4}{x^2-4}\)=\(\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)=\(\dfrac{x-2}{x+2}\)
c, |x|=3
TH1: x≥0 thì x=3 (TMĐK)
TH1: x<0 thì x=-3 (TMĐK)
Thay x=3 và biểu thức ta có:
\(\dfrac{3-2}{3+2}\)=\(\dfrac{1}{5}\)
Thay x=-3 và biểu thức ta có:
\(\dfrac{-3-2}{-3+2}\)=5
cho phân thức: \(\dfrac{x^2-4x+4}{x^2-4}\)
a, Với giá trị nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại |x|=3
d, Tìm giá trị của x để giá trị của phân thức bằng 2
`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>` \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\)
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`
a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)
b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)
c, \(\left|x\right|=3\Rightarrow x=\pm3\)
_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)
_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)
d, Có: \(\dfrac{x-2}{x+2}=2\)
\(\Leftrightarrow x-2=2\left(x+2\right)\)
\(\Leftrightarrow x-2=2x+4\)
\(\Leftrightarrow x=-6\left(tm\right)\)
Vậy...
cho phân thức: \(\dfrac{2x^2-4x+8}{x^3+8}\)
a, Với điều kiện nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại x=2
d, Tìm giá trị của x để giá trị của phân thức bằng 2
a, ĐKXĐ: x3+8≠0 ⇔ x≠-2
b, \(\dfrac{2x^2-4x+8}{x^3+8}\)=\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)=\(\dfrac{2}{x+2}\)
c, vì x=2 thỏa mãn đkxđ nên khi thay vào biểu thức ta có:
\(\dfrac{2}{2+2}\)=\(\dfrac{1}{2}\)
d, \(\dfrac{2}{x+2}\)=2 ⇔ 2x+4=2 ⇔ 2x=-2 ⇔ x=-1 (TMĐKXĐ)
Nên khi phân thức bằng 2 thì x=-1
a). Khi nào số a được gọi là nghiệm của đa thức P(x).
b). Cho P(x) = x4 + 2x2 + 1, chứng tỏ rằng P(x) không có nghiệm.
c). Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = ½ và y= -1
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
a)
Số a được gọi là nghiệm của đa thức P(x) khi có P(a) = 0
b)$x^4 + 2x^2 + 1 = 0$$⇔ (x^2 + 1)^2 = 0$$⇔ x^2 = -1$(vô nghiệm do $x^2 ≥ 0$ với mọi x)Vậy P(x) không có nghiệmc)\(S = x^2y^2.(16y^3 - 2x) = (-1.\dfrac{1}{2})^2.(16.(-1)^3-2.\dfrac{1}{2})=\dfrac{-17}{4}\)Cho hai đa thức bậc nhất P(x)=ax+b và Q(x)=cx+d. Chứng minh rằng với mọi giá trị của x, đa thức tổng P(x)+Q(x) có giá trị bằng tổng các giá trị của P(x) và Q(x)
Cho đa thức P=3x^2+5
a) Tìm giá trị của đa thức P khi x= -1; x= 0; x= 3
b) Chứng tỏ rằng đã thức P luôn dương vơi mọi giá trị của x
a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)
+, \(x=0\Leftrightarrow P=3.0^2+5=5\)
+, \(x=3\Leftrightarrow P=3.3^2+5=17\)
b/ Với mọi x ta có :
\(3x^2\ge0\)
\(5>0\)
\(\Leftrightarrow3x^2+5>0\)
\(\Leftrightarrow P>0\)
\(\Leftrightarrow P\) luôn dương với mọi x