Tìm nghiệm nguyên: (x + 1)(x + 3)(x + 5)(x + 7) + 3y3 = 2023
Bài 12: Tìm nghiệm của các đa thức sau:
a/ A(x) = 2x2 - 4x b/ B(y) = 3y3 + 4y - 2y2 - 3y3 - 5 + 2y2 - 3
c/ C(t) = 3t2 - 5 + t - 1 – t d/ M(x) = 5x2 - 4 - 3x2 + 2x + 5 - 2x e/ N(x) = 2x2 - 8
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
`e, N(x) = 2x^2 - 8 = 2( x^2 - 4 ) = 2( x-2 )( x + 2 )`
Xét `N(x)=0`
`=> 2(x-2)(x+2)=0`
`=>(x-2)(x+2)=0`
`=>x-2=0` hoặc `x+2=0`
`=>x=2` hoặc `x=-2`
Vậy `x in { +-2 }` là nghiệm của `N(x)`
tìm nghiệm của đa thức P(x)=//x+3/+5/-2023
P(x)=0 <=> ||x+3|+5|-2023 = 0
<=> ||x+3|+5| = 2023
<=>\(\left[\begin{array}{nghiempt}\left|x+3\right|+5=2023\\\left|x+3\right|+5=-2023\end{array}\right.\) <=> \(\left[\begin{array}{nghiempt}\left|x+3\right|=2018\\\left|x+3\right|=-2028\end{array}\right.\) <=> |x+3| = 2018 (vì |a| \(\ge\) 0)
<=> \(\left[\begin{array}{nghiempt}x+3=2018\\x+3=-2018\end{array}\right.\) <=> \(\left[\begin{array}{nghiempt}x=2015\\x=-2021\end{array}\right.\)
Vậy x1 = 2015 và x2 = -2021 là nghiệm của đa thức P(x)
Tìm a để phương trình sau:
b) a2 (x-3)=a(x-7)+2(x+2) có vô số nghiệm
c) a2 (x-1)-a(7x+2)=8x+1 có nghiệm duy nhất lớn hơn -2
d) a(x+3)= 5 - x có nghiệm duy nhất là nghiệm nguyên khi a là số nguyên
b: \(\Leftrightarrow a^2x-3a^2=ax-7a+2x+4\)
\(\Leftrightarrow a^2x-ax-2x=3a^2-7a+4\)
\(\Leftrightarrow x\left(a-2\right)\left(a+1\right)=\left(3a-4\right)\left(a-1\right)\)
Để phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(a-2\right)\left(a+1\right)=0\\\left(3a-4\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\varnothing\)
d: \(\Leftrightarrow ax+3a-5+x=0\)
=>x(a+1)=5-3a
Để phương trình có nghiệm duy nhất là số nguyên thì a+1<>0
hay a<>-1
Tìm số nguyên dương x sao cho 5x +13 là bội của 2x+1
Tìm x biết (2x-18).(3x+12)=0
Tính S= 1-2-3+4+
5-6-7+8+...+2021-2022-2023+2024+2025
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Tìm nghiệm của đa thức \(P\left(x\right)=||x+3|+5|-2023\)
\(P\left(x\right)=0\Leftrightarrow||x+3|+5|-2013=0\)
\(\Leftrightarrow||x+3|=2023\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x+3\right|+5=2023\\\left|x+3\right|+5=-2023\end{cases}\Leftrightarrow\orbr{\begin{cases}\left|x+3\right|=2018\\\left|x+3\right|=-2028\end{cases}\Leftrightarrow}\left|x+3\right|=2018}\)( vì |a| \(\ge\)0)
\(\Leftrightarrow\orbr{\begin{cases}x+3=2018\\x+3=-2018\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2015\\x=-2021\end{cases}}\)
Vậy \(x_1=2015\&x_2=-2021\)là nghiệm của đa thức P(x)
Tìm nghiệm đa thức P(x) = ||x+3|+5|-2023
ai trả lời được like cho nè ;)
nghiệm của đa thức P(x) là 2015 và -2021
Mình nhanh nhất
Tìm nghiệm nguyên của phương trình x^7 – x^5 + x^4 – x^3 – x^2 + x = 1992
Tìm x ,biết:
(x-1)3_ (2/2023-7/247+1/8)=7/247-2/2023
\(\left(x-1\right)^3-\left(\dfrac{2}{2023}-\dfrac{7}{247}+\dfrac{1}{8}\right)=\dfrac{7}{247}-\dfrac{2}{2023}\)
\(\Rightarrow\left(x-1\right)^3-\dfrac{2}{2023}+\dfrac{7}{247}-\dfrac{1}{8}=\dfrac{7}{247}-\dfrac{2}{2023}\)
\(\Rightarrow\left(x-1\right)^3=\dfrac{7}{247}-\dfrac{7}{247}-\dfrac{2}{2023}+\dfrac{2}{2023}+\dfrac{1}{8}\)
\(\Rightarrow\left(x-1\right)^3=\dfrac{1}{8}\)
\(\Rightarrow\left(x-1\right)^3=\left(\dfrac{1}{2}\right)^3\)
\(\Rightarrow x-1=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}+1\)
\(\Rightarrow x=\dfrac{3}{2}\)
Lời gải:
$(x-1)^3=\frac{7}{247}-\frac{2}{2023}+\frac{2}{2023}-\frac{7}{247}+\frac{1}{8}=\frac{1}{8}$
$x-1=\frac{1}{2}$
$x=\frac{1}{2}+1=\frac{3}{2}$
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).