Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:02

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

Vũ Ngọc Thảo Nguyên
15 tháng 7 2023 lúc 12:21

câu c,d bài 2

Diệu
Xem chi tiết
Vũ Quốc Huy
22 tháng 3 2019 lúc 20:07

Hỏi đáp Toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2018 lúc 2:16

Công An Phường
Xem chi tiết
An Thy
24 tháng 6 2021 lúc 18:12

c) Vì tam giác ABC vuông tại A \(\Rightarrow AMHN\) là hình chữ nhật

Ta có: \(\dfrac{S_{BMNC}}{S_{ABC}}=\dfrac{S_{ABC}-S_{AMN}}{S_{ABC}}=1-\dfrac{S_{AMN}}{S_{ABC}}\)

Ta có: \(\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AM.AN}{\dfrac{1}{2}.AB.AC}=\dfrac{AM.AN}{AB.AC}=\dfrac{AM.AB.AN.AC}{\left(AB.AC\right)^2}\)

\(=\dfrac{AH^2.AH^2}{\left(AH.BC\right)^2}=\dfrac{AH^4}{\left(AH.BC\right)^2}=\dfrac{AH^2}{BC^2}\)

Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

\(\Rightarrow\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\left(\dfrac{24}{5}\right)^2}{10^2}=\dfrac{144}{625}\Rightarrow\dfrac{S_{BMNC}}{S_{ABC}}=1-\dfrac{144}{625}=\dfrac{481}{625}\)

d) Ta có: \(\angle ANH+\angle AMH=90+90=180\Rightarrow AMHN\) nội tiếp

\(\Rightarrow\angle ANM=\angle AHM=\angle ABC\left(=90-\angle BHM\right)\)

\(\Rightarrow BMNC\) nội tiếp 

\(\Rightarrow\) 4 đường trung trực của các đoạn thẳng BM,MN,NC,CB đồng quy

undefined

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 22:40

a) Xét ΔAHM vuông tại M và ΔABH vuông tại H có 

\(\widehat{HAM}\) chung

Do đó: ΔAHM\(\sim\)ΔABH(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=AM\cdot AB\)(Đpcm)

Haru
Xem chi tiết
Akai Haruma
16 tháng 10 2021 lúc 21:40

Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:

$AM.AB=AH^2$

$AN.AC=AH^2$

Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:

$AH^2=AB^2-AH^2$

$\Leftrightarrow 2AH^2=AB^2$ 

Cái này thì không có cơ sở để cm. Bạn coi lại đề.

Chi Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 21:24

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng với ΔACB

bi phạm
Xem chi tiết
Trần Thùy Linh
4 tháng 4 2020 lúc 12:37
https://i.imgur.com/2qdMOmI.jpg
Khách vãng lai đã xóa
Thanh Bình
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:39

\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)

ỵyjfdfj
Xem chi tiết
Lê Song Phương
31 tháng 8 2023 lúc 18:27

a) Tam giác AKB vuông tại K có đường cao KM nên \(AK^2=AM.AB\)

Chứng minh tương tự, ta có \(AK^2=AN.AC\)

Từ đó suy ra \(AM.AB=AN.AC\) (đpcm)

b) Tam giác KMN vuông tại K nên \(KM^2+KN^2=MN^2\)

Dễ thấy tứ giác AMKN là hình chữ nhật, suy ra \(AK=MN\). Từ đó \(KM^2+KN^2=AK^2\).

Tam giác ABC vuông tại A, đường cao AK nên \(AK^2=KB.KC\)

Thế thì \(KM^2+KN^2=KB.KC\) (đpcm)

c) Tam giác AKB vuông tại K, có đường cao KM nên \(AM.BM=KM^2\)

 Tương tự, ta có \(AN.CN=KN^2\)

 Từ đó \(AM.BM+AN.CN=KM^2+KN^2\)

Theo câu b), \(KM^2+KN^2=KB.KC\)

Do đó \(AM.BM+AN.CN=KB.KC\) (đpcm)