Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:
$AM.AB=AH^2$
$AN.AC=AH^2$
Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:
$AH^2=AB^2-AH^2$
$\Leftrightarrow 2AH^2=AB^2$
Cái này thì không có cơ sở để cm. Bạn coi lại đề.
Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:
$AM.AB=AH^2$
$AN.AC=AH^2$
Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:
$AH^2=AB^2-AH^2$
$\Leftrightarrow 2AH^2=AB^2$
Cái này thì không có cơ sở để cm. Bạn coi lại đề.
cho tam giác abc vuông tại a có đường cao ah chia cạnh huyền bc thành hai đoạn bh=4 hc=9 a) tính ah,ab,ac b) gọi m,n lần lượt là hình chiếu của h trên ab và ac chứng minh rằng am.ab=an.ac
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB,AC.
a, AM.AB=AN.AC
b,BM/CN=AB^3/AC^3
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi M, N lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng : AM.AB = AN.AC
Bài 5: Cho tam giác ABC vuông tại A ( AB AC) . Đường cao AH (H BC ).Gọi M và Nl ần lượt là hình chiếu của H trên AB và AC.
a) Giả sử HB = 3,6cm, HC = 6,4cm. Tính độ dài HA, AC và góc B, góc C
b) Chứng minh: AM.AB=AN.AC và HB.HC=AM.MB + AN.NC
c) QuaAkẻ đường thẳng vuông góc với MN cắt BC tại K. Chứng minh rằng: K là trung điểm của đoạn thẳng BC
Cho tam giác ABC vuông tại A. Đường cao AK. Biết AB = 12cm, AC = 16cm.
a) Gọi M, N là hình chiếu vuông góc của K lần lượt lên AB, AC.
Chứng minh: AM.AB = AN.AC
b) Chứng minh: KM2 + KN2 = KB.KC.
c) Chứng minh: AM.BM + AN.CN = KB.KC
cho am giác abc vuông góc tại a,có ab nhỏ hơn ac ,đg cao ah ,gọi m n lần lượt là hình chiếu của ab ac
a c/m mn=ah
b am.ab=an.ac
Cho ABC vuông tại A, có AH là đường cao. Gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng: a) AM.AB = AN. AC b) HB.HC = MA.MB + NA.NC
Cho tam giác ABC vuông tại A có AH là đường cao. Biết AC= 16cm, BC = 20 cm
a)Giải tam giác ABC
b)Tính CH và AH
c) Gọi M,N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh: AM.AB= BH.HC
Mấy anh chị làm giúp em cái nay đi ;(
Cho tam giác ABC có ba góc nhọn, đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC.
Chứng minh:
a) AM.AB = AN.AC
b) ∆AMN đồng dạng ∆ACB