Giải phương trình √2xᒾ-3x-5 =√xᒾ-7
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
Phương trình 2xᒾ + 5mx + mᒾ-4=0 có hai no trái dấu, giá trị m là:
Ptr có `2` nghiệm trái dấu `<=>ac < 0`
`<=>2(m^2-4) < 0`
`<=>m^2 < 4<=>|m| < 2<=>-2 < m < 2`
a) √x < 5 b) √x = 10 c) √xᒾ = 7 d) √xᒾ = |-8|
\(a,\sqrt{x}< 5\Leftrightarrow x< 25\\ b,\sqrt{x}=10\Leftrightarrow x=100\\ c,\sqrt{x^2}=7\Leftrightarrow\left|x\right|=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\sqrt{x^2}=\left|-8\right|\Leftrightarrow\left|x\right|=8\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
a) \(\sqrt{x}< 5\text{⇒}x< 25\)
b) \(\sqrt{x}=10\text{⇒}x=100\)
c) \(\sqrt{x^2}=7\text{⇒}x^2=49\text{⇒}x=+-7\)
d) \(\sqrt{x^2}=\left|-8\right|\text{⇒}x^2=64\text{⇒}x=+-8\)
Giải phương trình:
\(\sqrt{x^2-3x+5}+x^2-3x=7\)
\(ĐK:x^2-3x+5\ge0\)
Đặt \(\sqrt{x^2-3x+5}=a\ge0\)
\(PT\Leftrightarrow a+a^2-5=7\\ \Leftrightarrow a^2+a-12=0\\ \Leftrightarrow\left(a-3\right)\left(a+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow\sqrt{x^2-3x+5}=3\\ \Leftrightarrow x^2-3x+5=9\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
đặt \(x^2-3x=y\)
\(pt\Leftrightarrow\sqrt{y+5}+y=7\\ \Leftrightarrow\sqrt{y+5}=7-y\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=\left(7-y\right)^2\\7-y\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=49-14y+y^2\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-15y+44=0\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(y^2-11y\right)-\left(4y-44\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-11\right)\left(y-4\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=4\\y=11\end{matrix}\right.\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x-4=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+1\right)\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\y\le7\end{matrix}\right.\)
Vậy \(x\in\left\{4;-1\right\}\)
giải phương trình qui về phương trình tích một ẩn
a/ 2x - 3 = 2 - x
b/ 3x + 3 = 7 + 5x
c/ 7x - 3 = 3x + 13
d/\(\dfrac{5x-2}{3}\)=\(\dfrac{5-3x}{2}\)
a)
`2x-3=2-x`
`<=>2x+x=2+3`
`<=>3x=5`
`<=>x=5/3`
b)
`3x+3=7+5x`
`<=>3x-5x=7-3`
`<=>-2x=4`
`<=>x=-2`
c)
`7x-3=3x+13`
`<=>7x-3x=13+3`
`<=>4x=16`
`<=>x=4`
d)
`(5x-2)/3=(5-3x)/2`
`<=>10x-4=15-9x`
`<=>10x+9x=15+4`
`<=>19x=19`
`<=>x=1`
giải phương trình : (3x-7).(x+5) = (x+5).(3-2x)
căn(x^2-3x+5)x^2=3x+7 giải phương trình
căn(x^2-3x+5)x^2=3x+7 giải phương trình
Giải các phương trình sau: 5 – 3x = 6x + 7
5 – 3x = 6x + 7 ⇔ 5 – 7 = 6x + 3x ⇔ -2 = 9x ⇔ x = -2/9