Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thanh Ngân
Xem chi tiết
Như Trần
25 tháng 6 2019 lúc 22:09

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)

Tami Hiroko
Xem chi tiết
lê duy mạnh
8 tháng 10 2019 lúc 21:26

a,(2n+4).2=4(n+2) chia hwtc ho 8

Nguyễn Văn Tuấn Anh
8 tháng 10 2019 lúc 21:28

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Ahwi
8 tháng 10 2019 lúc 21:28

a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)

\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8n+8\)

\(=8\left(n+1\right)\)

có \(8\left(n+1\right)⋮8\)

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=24n\)

có \(24n⋮24\)

\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)

Linh nè
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
16 tháng 6 2019 lúc 18:43

Tham khảo bài làm :

Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

Hoàng Phúc
Xem chi tiết
Vũ Hà Khánh Linh
17 tháng 11 2016 lúc 18:07

Tự túc là hạnh phúc

alibaba nguyễn
17 tháng 11 2016 lúc 21:23

Ta có

\(n^n-n^2+n-1\)

= (n n - 1) + (- n2 + n)

= (n - 1)(n n-1 + n n-2 +...+ n + 1) - n(n - 1)

= (n - 1)(n n-1 + n n-2 +...+ n2 + 1)

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 2 + 1]

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2​ - 1) + n - 1]

= (n - 1)2 A(n) (biểu diễn vậy cho gọn nha)

Vậy \(n^n-n^2+n-1\)chia hết cho (n - 1)2

Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Huy Tú
27 tháng 6 2017 lúc 19:46

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

Hà Ngân
27 tháng 6 2017 lúc 19:50

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2

Toàn Quyền Nguyễn
Xem chi tiết
Nguyên
8 tháng 11 2024 lúc 9:30

CCó cái chem chép

Dương Nguyễn Ngọc Khánh
Xem chi tiết
Nguyễn Hoàng Tiến
15 tháng 6 2016 lúc 17:06

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

Nguyễn Hoàng Tiến
15 tháng 6 2016 lúc 17:08

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

Mai Anh
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:28

Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)

\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)

\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)

Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)

Suy ra : \(\frac{m}{n}\) có dạng :

\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)\(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).

Chúc bạn học tốt nha !!!

soyeon_Tiểubàng giải
1 tháng 1 2017 lúc 10:38

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)

\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)

\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))

MC: 1.2.3...(p-1)

Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1

Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)

Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

=> m chia hết cho p (đpvm)

Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:18

Mình bận xem mấy cái dạng bài tập hóa . Bạn cần gấp không mình làm cho .hihi

Mây❤️
Xem chi tiết
Linh Khánh
8 tháng 8 2018 lúc 11:57

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6