Giải phương trình ( x - 1 )3 + ( 2x - 3 )3 = 27x3 + 8
Giải pt: (x-1)3+(2x+3)3=27x3+8
(x-1)3+(2x+3)3=27x3+8
=> (x - 1 + 2x + 3)[(x - 1)2 - (x - 1)(2x + 3) + (2x + 3)2] = (3x)3 + 23
=> (3x + 2)[x2-2x+1-(2x2+x-3)+4x2+12x+9] = (3x + 2)[(3x)2 - 3x.2 + 22]
=> (3x + 2)(3x2 + 9x + 13) = (3x + 2)(9x2 - 6x + 4)
=> (3x + 2)(3x2 + 9x + 13) - (3x + 2)(9x2 - 6x + 4) = 0
=> (3x + 2)(3x2 + 9x + 13 - 9x2 + 6x - 4) = 0
=> (3x + 2)(-6x2 + 15x + 9) = 0
=>\(\left[{}\begin{matrix}3x+2=0\\-6x^2+15x+9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}3x=-2\\-3\left(2x^2+5x\right)=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+5x=3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+6x-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x\left(x+3\right)-\left(x+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\\left(2x-1\right)\left(x+3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình (x-1)3+(2x+3)3=27x3+8 có nghiệm là {-2/3;1/2;-3}
=>x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8
=>37x^3+51x^2+57x+26-27x^3-8=0
=>10x^3+51x^2+57x+18=0
=>(5x+3)(2x^2+9x+6)=0
=>x=-3/5 hoặc \(x=\dfrac{-9\pm\sqrt{33}}{4}\)
Giải phương trình: (x-1)^3+(2x+3)^3=27x^3+8
Ta có: \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+8x^3+36x^2+54x+27-27x^3-8=0\)
\(\Leftrightarrow-18x^3+33x^2+57x+18=0\)
\(\Leftrightarrow-18x^3+54x^2-21x^2+63x-6x+18=0\)
\(\Leftrightarrow-18x^2\left(x-3\right)-21x\left(x-3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-18x^2-21x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-18x^2+9x+12x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[-9x\left(2x-1\right)+6\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)\left(-9x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x-1=0\\-9x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=1\\-9x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{3;\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Giải phương trình: \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
pt⇔x3−3x2+3x−1+8x3+36x2+54x+27=27x3+8
⇔18x3−33x2−57x−18=0
⇔(3x+2)(6x2−15x−9)=0
⇔3(3x+2)(2x+1)(x−3)=0
⇔x∈{−12,−23,3}
giải các phương trình sau:
a \(x^3+x^2+x=-\dfrac{1}{3}\)
b \(x^3+2x^2-4x=-\dfrac{8}{3}\)
a)\(x^3+x^2+x=-\dfrac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow\sqrt[3]{4}x=x-2\)
\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
Giải các phương trình và bất phương trình sau
a) 2x + 5 = 2 - x
b) | x-7| = 2x + 3
c) 4/x+2 - 4x-6/4x-x3 = x-3/x(x-2)
d) 1-2x/4 - 1 < 1-5x/8
e) 3 - 5x/10 = 1+ x+1/3
f) 1-2x/4 - 2 < 1-5x/8
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
giải bất phương trình 2x-3/x-1<1/3
giải bất phương trình 2x-3/x-1 > 1/3
\(\dfrac{2x-3}{x-1}< \dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow6x-9< x-1\Leftrightarrow5x< 8\Leftrightarrow x< \dfrac{8}{5}\) và ĐK \(x\ne1\)
\(\dfrac{2x-3}{x-1}>\dfrac{1}{3}\left(đk:x\ne1\right)\)
\(\Leftrightarrow x-1< 6x-9\Leftrightarrow5x>8\Leftrightarrow x>\dfrac{8}{5}\) và ĐK \(x\ne1\)
Giải các phương trình sau. 2x-1=2-x ; x-5x-1/6=8-3x/4. ; x/3 - 2x+1/2=x/6 - x ; (2x-5)(x+3)=0. ; (1-7)(2+x)=0
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2