pt⇔x3−3x2+3x−1+8x3+36x2+54x+27=27x3+8
⇔18x3−33x2−57x−18=0
⇔(3x+2)(6x2−15x−9)=0
⇔3(3x+2)(2x+1)(x−3)=0
⇔x∈{−12,−23,3}
pt⇔x3−3x2+3x−1+8x3+36x2+54x+27=27x3+8
⇔18x3−33x2−57x−18=0
⇔(3x+2)(6x2−15x−9)=0
⇔3(3x+2)(2x+1)(x−3)=0
⇔x∈{−12,−23,3}
Giải phương trình:
\(a,\left|-5x\right|=3x-16\)
\(b,\left|2x+1\right|=\left|x-1\right|\)
\(c,\left|2x+1\right|-\left|5x-2\right|=3\)
Giải các phương trình:
\(a,\left(2x+1\right)^3-\left(x-1\right)^3-\left(x+2\right)^3=0\)
\(b,\left(x-3\right)^3+\left(x+11\right)^3-\left(2x+8\right)^3=0\)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)
Giải các phương trình sau:
\(a,\left(2x-1\right)^2-3x=2x\left(2x-3\right)-x+2\)
\(b,\left(x-3\right)^2+4x=\left(x-1\right)^2+8\)
Giải các phương trình sau
a) \(\left(2x-2\right)^3=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
b) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x+2\right)+\left(x+1\right)+38\)
c) \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-2\right)-8\)
Giải các bất phương trình:
\(a,\left(x-1\right)\left(x+2\right)>\left(x-1\right)^2+3\)
\(b,x\left(2x-1\right)-8< 5-2x\left(1-x\right)\)
Giải phương trình sau :
\(\left(2x-1\right)^3+6\left(3x-1\right)^2=2\left(x+1\right)^3+6\left(x+2\right)^3\)