Ta có: \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+8x^3+36x^2+54x+27-27x^3-8=0\)
\(\Leftrightarrow-18x^3+33x^2+57x+18=0\)
\(\Leftrightarrow-18x^3+54x^2-21x^2+63x-6x+18=0\)
\(\Leftrightarrow-18x^2\left(x-3\right)-21x\left(x-3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-18x^2-21x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-18x^2+9x+12x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[-9x\left(2x-1\right)+6\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)\left(-9x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x-1=0\\-9x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=1\\-9x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{3;\dfrac{1}{2};\dfrac{2}{3}\right\}\)