\(\left\{{}\begin{matrix}1,2x+1,2y=90\\\dfrac{90}{y}-\dfrac{90}{x}=1\end{matrix}\right.\) giải hệ
Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x}{105}=\dfrac{y}{90}\\\dfrac{y}{24}=\dfrac{z}{21}\\x+y+z=292\end{matrix}\right.\)
Lời giải:
Từ \(\left\{\begin{matrix} \frac{x}{105}=\frac{y}{90}\\ \frac{y}{24}=\frac{z}{21}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x}{420}=\frac{y}{360}\\ \frac{y}{360}=\frac{z}{315}\end{matrix}\right.\) \(\Rightarrow \frac{x}{420}=\frac{y}{360}=\frac{z}{315}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{420}=\frac{y}{360}=\frac{z}{315}=\frac{x+y+z}{420+360+315}=\frac{292}{1095}=\frac{4}{15}\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{4}{15}.420=112\\ y=\frac{4}{15}.360=96\\ z=\frac{4}{15}.315=84\end{matrix}\right.\)
giải hệ phương trình sau : \(\left\{{}\begin{matrix}\dfrac{x_1-1}{9}=\dfrac{x_2-2}{8}=\dfrac{x_3-3}{7}=...=\dfrac{x_9-1}{1}\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-10\right)=\left(x_2-10\right)=\left(x_3-10\right)=...=\left(x_9-10\right)\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
=>x1=x2=x3=...=x9=10
giải hệ phương trình :\(\left\{{}\begin{matrix}x+y=75\\\frac{90}{y}-\frac{90}{x}=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=75\\\frac{90}{x}-\frac{90}{y}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=75-y\\\frac{90}{75-y}-\frac{90}{y}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=75-y\\90y-6750+90y=75y-y^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=75-y\\y^2+105y-6750=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=30\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=225\\y=-150\end{matrix}\right.\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x-35y}{35}=2\\\dfrac{50y-x}{50}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-35y=70\\-x+50y=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15y=120\\x-35y=70\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=8\\x=70+35y=70+35\cdot8=350\end{matrix}\right.\)
b: ĐKXĐ: x<>0 và y<>0
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{3}{16}-\dfrac{1}{4}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{2}{48}=\dfrac{1}{24}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}x+y=\dfrac{x-3}{2}\\x+2y=\dfrac{2-4y}{15}\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}-\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\) d)\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{9}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=-3\\\dfrac{3}{x}-\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y}=-10\\\dfrac{1}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{x+2}{y}=\dfrac{x+1}{y-2}\\\dfrac{5x+1}{5x-2}=\dfrac{y-2}{y+2}\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+\left|y\right|=4\\4x-3y=1\end{matrix}\right.\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
giải hệ pt:
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)
giải hệ sau bằng phương pháp thế
a)\(\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-2x+3y=-1\\x+2y=3\end{matrix}\right.\)
giải hệ sau:
a)\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{4}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\dfrac{5}{x-1}+\dfrac{3}{3y-2}=1\\\dfrac{2}{2x-1}+\dfrac{1}{3y-2}=1\end{matrix}\right.\)
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
Giải hệ
1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy-1=0\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}y\left(4x^3+1\right)=3\\y^3\left(3x-1\right)=4\end{matrix}\right.\)
1.
ĐKXĐ: ....
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-1=xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x-\dfrac{1}{x}=y\end{matrix}\right.\)
Trừ vế cho vế: \(\Rightarrow x=\dfrac{1}{y}\Rightarrow xy=1\)
Thay xuống pt dưới: \(2x^2-2=0\Leftrightarrow x^2=1\Leftrightarrow...\)
2.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}4x^3+1=\dfrac{3}{y}\\3x-1=\dfrac{4}{y^3}\end{matrix}\right.\)
Cộng vế với vế:
\(4x^3+3x=4\left(\dfrac{1}{y}\right)^3+3\left(\dfrac{1}{y}\right)\)
\(\Leftrightarrow4\left(x^3-\dfrac{1}{y^3}\right)+3\left(x-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow4\left(x-\dfrac{1}{y}\right)\left(x^2+\dfrac{x}{y}+y^2\right)+3\left(x-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{y}\right)\left(4x^2+\dfrac{4x}{y}+\dfrac{4}{y^2}+3\right)=0\)
\(\Leftrightarrow x-\dfrac{1}{y}=0\Leftrightarrow y=\dfrac{1}{x}\)
Thế vào pt đầu:
\(4x^3+1=3x\)
\(\Leftrightarrow4x^3-3x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)
\(\Leftrightarrow...\)