\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-10\right)=\left(x_2-10\right)=\left(x_3-10\right)=...=\left(x_9-10\right)\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
=>x1=x2=x3=...=x9=10
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-10\right)=\left(x_2-10\right)=\left(x_3-10\right)=...=\left(x_9-10\right)\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
=>x1=x2=x3=...=x9=10
Tìm các giá trị của \(x_1,x_2,x_3,...,x_{2008}\)sao cho:
\(\left\{{}\begin{matrix}x_1+x_2+x_3+...+x_{2008}=2008\\x_1^3+x_2+x_3^3+...+x_{2008}^3=x_1^4+x_2^4+x_3^4+...+x_{2008}^4\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^2+\dfrac{1}{x^2}+\dfrac{y}{x}=12\\y+\dfrac{1}{x}+\dfrac{y}{x}=8\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
cho đa thức P(x) thỏa mãn \(P\left(1\right)=1;P\left(\dfrac{1}{x}\right)=\dfrac{1}{x^2}P\left(x\right),\forall x\ne0;\) \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right),\forall x_1,x_2\in R\). tính \(P\left(\dfrac{5}{7}\right)\)
1. Giải phương trình, hệ phương trình:
a) 2x2 - 5x + 3 = 0
b) x2 - 3x = 0
c) \(\left\{{}\begin{matrix}2\left(x+1\right)-5\left(y+1\right)=5\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)
giải hệ pt sau:
\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
Giải các hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2+xy=7\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=3\\\dfrac{2}{x+y}-\dfrac{3}{x-y}=1\end{matrix}\right.\)
1.Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}2x-3y=3\\-4y=3x-13\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)
2.Cho hệ phương trình:\(\left\{{}\begin{matrix}mx-y=2\\4x-my=m+6\end{matrix}\right.\)
a)giải hệ với m=-1
b) Tìm m để hệ phương trình có nghiệm duy nhất
c) tìm m để hệ phương trình có vô số nghiệm
d) tìm m để hệ phương trình vô nghiệm
giúp mk vs ạ!! mk đang cần gấp ạ!! Tks