Chứng minh: a5-a chia hết 30 với a ϵ Z
Chứng minh rằng :
a5 - a chia hết cho 30 với mọi a ϵ Z .😜😘
Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)
\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1
Chứng minh rằng :
a2016 - a2012 chia hết cho 30 với mọi a ϵ Z .
Lời giải:
\(B=a^{2016}-a^{2012}=a^{2012}(a^4-1)=a^{2012}(a^2-1)(a^2+1)\)
\(=a^{2011}a(a-1)(a+1)(a^2+1)\)
Ta thấy $a,a-1,a+1$ là 3 số nguyên liên tiếp. Do đó trong 3 số luôn tồn tại ít nhất một số chẵn và một số chia hết cho $3$
$\Rightarrow a(a-1)(a+1)\vdots 2$ và $a(a-1)(a+1)\vdots 3$
Mà $(2,3)=1$ nên $a(a-1)(a+1)\vdots 6$
$\Rightarrow B\vdots 6$ (1)
Mặt khác:
Ta biết một số chính phương khi chia cho $5$ có thể có dư là $0,1,4$
Nếu $a^2\vdots 5$ thì \(B=a^{2012}(a^4-1)=a^2.a^{2010}(a^4-1)\vdots 5\)
Nếu $a^2$ chia $5$ dư $1$: \(\Rightarrow a^2-1\vdots 5\)
\(\Rightarrow B=a^{2012}(a^2-1)(a^2+1)\vdots 5\)
Nếu $a^2$ chia $5$ dư $4$ $\Rightarrow a^2+1\vdots 5$
$\Rightarrow B=a^{2012}(a^2-1)(a^2+1)\vdots 5$
Vậy tóm lại $B\vdots 5$ (2)
Từ $(1);(2)$ mà $(5,6)=1$ nên $B\vdots (5.6)$ hay $B\vdots 30$ (đpcm)
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
cm a5 -a chia hết cho 30 với a thuộc Z
\(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(\)\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Chứng minh : \(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 5 và 6
\(a\left(a-1\right)\left(a+1\right)\)chia hết cho 6
Mà (5,6) = 1
\(\Rightarrow a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 30
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)chia hết cho 30
\(\Rightarrow a^5-a\) chia hết cho 30 (ĐPCM)
Chứng minh rằng :
n3 - 13n chia hết cho 6 với mọi n ϵ Z
Ta có :
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Với mọi số nguyên n ta có :
+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )
+) \(12n⋮6\)
\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)
\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)
Chứng minh rằng :
n( 2n + 1 )( 7n + 1 ) chia hết cho 6 với mọi n ϵ Z
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
a\(^2\).(a+1)+2a.(a+1) chia hết cho 6 với a ϵ Z
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)⋮2.3\)
\(\Rightarrow a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)
Cho x,y ϵ Z thoả mãn x.y=\(^{2023^{2022}}\) . Chứng minh: \(^{x^{2022}}\) - \(y^{2022}\) chia hết cho 24
chứng minh với a thuộc z thì: an+5 - an+4 chia hết cho 30
Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30