\(C=\dfrac{5x^2-22x+25}{x^2-4x+4}\)
GTNN của C là bao nhiêu
Tìm GTNN của K(x)=5x2-22x+25/x2-4x+4
tìm GTNN
h(x)= \(\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
k(x)=\(\dfrac{5x^2-22x+25}{x^2-4x+4}\)
help me
\(k\left(x\right)=\dfrac{5x^2-22x+25}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5x^2-20x+20-x+2-x+2+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{\left(5x^2-20x+20\right)-\left(x-2\right)-\left(x-2\right)+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x^2-4x+4\right)-\left(x-2\right)-\left(x-2\right)+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x-2\right)^2-\left(x-2\right)-\left(x-2\right)+1}{\left(x-2\right)^2}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x-2\right)^2}{\left(x-2\right)^2}-\dfrac{x-2}{\left(x-2\right)^2}-\dfrac{x-2}{\left(x-2\right)^2}+\dfrac{1}{\left(x-2\right)^2}\)
\(\Leftrightarrow k\left(x\right)=5-\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{\left(x-2\right)^2}\)
Đặt \(y=\dfrac{1}{x-2}\)
\(\Rightarrow k\left(x\right)=5-y-y+y^2=y^2-2y+1+4=\left(y-1\right)^2+4\ge4\)
Vậy GTNN của \(k\left(x\right)=4\) khi \(y=1\Rightarrow\dfrac{1}{x-2}=1\Leftrightarrow x=3\)
\(h\left(x\right)=\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=\dfrac{x^2-2x+1+x-1+1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2}+\dfrac{x-1}{\left(x-1\right)^2}+\dfrac{1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=1+\dfrac{1}{x-1}+\dfrac{1}{\left(x-1\right)^2}\)
Đặt \(y=\dfrac{1}{x-1}\)
\(\Rightarrow h\left(x\right)=1+y+y^2\)
\(\Rightarrow h\left(x\right)=y^2+y+1\)
\(\Rightarrow h\left(x\right)=y^2+2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(\Rightarrow h\left(x\right)=\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> GTNN của \(h\left(x\right)=\dfrac{3}{4}\) khi \(y+\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{-1}{2}\)
\(\Leftrightarrow\dfrac{1}{x-1}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=-1\)
Tìm GTLN - GTNN của:
1)
1: \(y=x+\dfrac{4}{\left(x-2\right)^2}\)
\(\Leftrightarrow y'=1+\left(\dfrac{4}{\left(x-2\right)^2}\right)'\)
=>\(y'=1+\dfrac{4'\left(x-2\right)^2-4\left[\left(x-2\right)^2\right]'}{\left(x-2\right)^4}\)
=>\(y'=1+\dfrac{-4\cdot2\cdot\left(x-2\right)'\left(x-2\right)}{\left(x-2\right)^4}\)
=>\(y'=1-\dfrac{8}{\left(x-2\right)^3}\)
Đặt y'=0
=>\(\dfrac{8}{\left(x-2\right)^3}=1\)
=>\(\left(x-2\right)^3=8\)
=>x-2=2
=>x=4
Đặt \(f\left(x\right)=x+\dfrac{4}{\left(x-2\right)^2}\)
\(f\left(4\right)=4+\dfrac{4}{\left(4-2\right)^2}=4+1=5\)
\(f\left(0\right)=0+\dfrac{4}{\left(0-2\right)^2}=0+\dfrac{4}{4}=1\)
\(f\left(5\right)=5+\dfrac{4}{\left(5-2\right)^2}=5+\dfrac{4}{9}=\dfrac{49}{9}\)
Vì f(0)<f(4)<f(5)
nên \(f\left(x\right)_{max\left[0;5\right]\backslash\left\{2\right\}}=f\left(5\right)=\dfrac{49}{9}\) và \(f\left(x\right)_{min\left[0;5\right]\backslash\left\{2\right\}}=1\)
2: \(y=cos^22x-sinx\cdot cosx+4\)
\(=1-sin^22x-\dfrac{1}{2}\cdot sin2x+4\)
\(=-sin^22x-\dfrac{1}{2}\cdot sin2x+5\)
\(=-\left(sin^22x+\dfrac{1}{2}\cdot sin2x-5\right)\)
\(=-\left(sin^22x+2\cdot sin2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{81}{16}\right)\)
\(=-\left(sin2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}\)
\(-1< =sin2x< =1\)
=>\(-\dfrac{3}{4}< =sin2x+\dfrac{1}{4}< =\dfrac{5}{4}\)
=>\(0< =\left(sin2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)
=>\(0>=-\left(sin2x+\dfrac{1}{4}\right)^2>=-\dfrac{25}{16}\)
=>\(\dfrac{81}{16}>=-sin\left(2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}>=-\dfrac{25}{16}+\dfrac{81}{16}=\dfrac{7}{2}\)
=>\(\dfrac{81}{16}>=y>=\dfrac{7}{2}\)
\(y_{min}=\dfrac{7}{2}\) khi \(sin2x+\dfrac{1}{4}=\dfrac{5}{4}\)
=>\(sin2x=1\)
=>\(2x=\dfrac{\Omega}{2}+k2\Omega\)
=>\(x=\dfrac{\Omega}{4}+k\Omega\)
\(y_{max}=\dfrac{81}{16}\) khi sin 2x=-1
=>\(2x=-\dfrac{\Omega}{2}+k2\Omega\)
=>\(x=-\dfrac{\Omega}{4}+k\Omega\)
Tìm GTNN; GTLN của các biểu thức sau:
a) A= x2 - 4x + 1
b) B= 5 - 8x - x2
c) C= 5x - x2
d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)
e) \(E=\dfrac{1}{x^2+5x+14}\)
f)\(F=\dfrac{2x^2+4x+10}{x^2+2x+3}\)
Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)
\(=(x-2)^2-3\geq 0-3=-3\)
Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$
Vậy GTNN của $A$ là $-3$ khi $x=2$
Câu b:
\(B=5-8x-x^2=21-(x^2+8x+16)\)
\(=21-(x+4)^2\leq 21-0=21\)
Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$
Vậy GTLN của $B$ là $21$ khi $x=-4$
Câu c:
\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)
\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)
Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)
Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$
Câu d:
\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)
\(=(x^2+5x-6)(x^2+5x+6)\)
\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)
Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)
Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$
Câu e:
\(E=\frac{1}{x^2+5x+4}=\frac{1}{x^2+5x+\frac{25}{4}+\frac{31}{4}}=\frac{1}{(x+\frac{5}{2})^2+\frac{31}{4}}\)
Vì \((x+\frac{5}{2})^2\geq 0, \forall x\Rightarrow (x+\frac{5}{2})^2+\frac{31}{4}\geq \frac{31}{4}\)
\(\Rightarrow E\leq \frac{1}{\frac{31}{4}}=\frac{4}{31}\)
Vậy GTLN của $E$ là \(\frac{4}{31}\) tại \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Câu f:
\(F=\frac{2x^2+4x+10}{x^2+2x+3}=\frac{2(x^2+2x+3)+4}{x^2+2x+3}=2+\frac{4}{x^2+2x+3}\)
\(=2+\frac{4}{(x^2+2x+1)+2}=2+\frac{4}{(x+1)^2+2}\)
Vì \((x+1)^2\geq 0\Rightarrow \frac{4}{(x+1)^2+2}\leq \frac{4}{2}=2\)
\(\Rightarrow F\leq 2+2=4\)
Vậy GTLN của $F$ là $4$ khi $x=-1$
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
1.tìm GTNN của
A=x2-4x+1
B=x2-5x-2
C=-25x2-x+1
D=2x2+3x+1
E=3x2+12x-1
2.Tìm x biết
a,(4x-3)*(4x+3)-15*(x-1)*(x+1)-(x+6)-3x=1
b,(5x+1)*(5x-1)-25*(x+3)*(x-1)=4
Bài 2 :
a )
\(\left(4x-3\right)\left(4x+3\right)-15\left(x-1\right)\left(x+1\right)-\left(x+6\right)-3x=1\)
\(\Leftrightarrow16x^2-9-15x^2+15-x-6-3x=1\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Delta=16+4=20>0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{4+\sqrt{20}}{2}=2+\sqrt{5}\\\dfrac{4-\sqrt{20}}{2}=2-\sqrt{5}\end{matrix}\right.\)
Vậy \(x=2-\sqrt{5}\) hoặc \(x=2+\sqrt{5}\)
b )
\(\left(5x+1\right)\left(5x-1\right)-25\left(x+3\right)\left(x-1\right)=4\)
\(\Leftrightarrow25x^2-1-25x^2-50x+75=4\)
\(\Leftrightarrow-50x+70=0\)
\(\Leftrightarrow x=\dfrac{70}{50}\)
Vậy \(x=\dfrac{70}{50}\)
1) A=x2-4x+4-3=(x-2)2-3
(x-2)2≥0 (Với mọi x)
=> (x-2)2-3 ≥ -3 (V...)
=> Min A=-3
Làm tương tự với những câu khác nha
2) a)( 4x-3)(4x+3)-15(x-1)(x+1)-x-6-3x=1
<=> 16x2-9-15x2+15-4x-6=1
<=> x2-4x=1 <=> x2-4x-1=0 <=> (x-2)2=5 =>x-2=\(\sqrt{5}\) => x=\(\sqrt{5}+2\)
làm tương tự nha
Cho x>2. Tìm GTNN của biểu thức:
C = \(4x+3+\dfrac{1}{x-4}\)
Giải các phương trình sau:
\(a,\sqrt{1-4x+4x^2}=5\)
\(b,\sqrt{4-5x}=12\)
\(c,\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(d,\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
a,
\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c,
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\\ \sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\\ 2\left(1-\sqrt{x-1}\right)=0\\ 1-\sqrt{x-1}=0\\ \sqrt{x-1}=1\\ x-1=1\\ x=2\)