\(2x^3-22x^2+36x=0\)
tìm x biết a) ( x + 3 )2 - ( 2x + 1 ).( x+3 ) = 0 ; b) x3 - 12x2 + 36x = 0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
Chứng minh
a. \((2sin^2x-1)tan^22x+3(2cos^2x-1)=0\)
b. \(5sinx-2=3tan^2x(1-sinx)\)
a) pt <=> - cos2x. tan22x + 3.cos2x=0
<=> \(\dfrac{sin^22x}{-cos2x}\)+ 3cos2x =0
<=> sin22x - 3cos22x = 0
<=> 1 - 4 cos22x = 0
<=> 1 - 4.\(\dfrac{1+cos4x}{2}\)= 0
<=> cos4x = \(\dfrac{-1}{2}\)
Giải các PTLG sau:
\(tan^23x+tan3x\cdot tan9x=2\)
\(tan^33x+cot^33x+cot^36x=\dfrac{11}{6}\)
\(tan^22x-tan2x\cdot tan6x=2\)
\(tan^3x+cot^3x+cot^9x=\dfrac{11}{3}\)
Tìm x:
a) x^2 - 25x=0
b) (x-3)^2 - 36x^2=0
c) 2x(3-x)+2x^2=12
d) x(x-2)-x+2=0
a) x2 - 25x = 0
=> x(x - 25) = 0
=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
b) (x - 3)2 - 36x2 = 0
=> (x - 3)2 - (6x)2 = 0
=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)
=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)
c) 2x(3 - x) + 2x2 = 12
=> 6x - 2x2 + 2x2 = 12
=> 6x = 12
=> x = 2
d) x(x - 2) - x + 2 = 0
=> x(x - 2) - (x - 2) = 0
=> (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a. x2 - 25x = 0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Vậy ...
b.(x-3)2 - 36x2 = 0
\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)
Vậy...
c.2x(3-x)+2x2 = 12
<=> 6x - 2x2 + 2x2 = 12
<=> 6x = 12
<=> x = 2
d. x (x-2) - x + 2 =0
<=> x(x-2 ) - (x - 2 ) = 0
<=> ( x - 2 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...
GIẢI CÁC PHƯƠNG TRÌNH SAU:
2x3+6x2+6x+1=0
X^3-3X^2+3X-3=0
2X^3+6X^2+6X+1=0
3X^3+18X^2+36X+23=0
\(\cos^2\left(\frac{\pi}{2}+2x\right)-\cos^22x-3\cos\left(\frac{\pi}{2}-2x\right)-4=0\)
\(\Leftrightarrow sin^22x-cos^22x-3sin2x-4=0\)
\(\Leftrightarrow sin^22x-\left(1-sin^22x\right)-3sin2x-4=0\)
\(\Leftrightarrow2sin^22x-3sin2x-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{5}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
bài 7 tìm x
1,x(x+3)-5(x+3)=0 2,5x(x-1)=x-1
3,(x+1)=(x+1)\(^2\) 4,x(2x-3)-2(3-2x)=0
5,\(\left(x-2\right)^2-4=0\) 6,\(36x^2=49\)
7,\(2x\left(x-6\right)-x+6=0\) 8,\(3x\left(2x-1\right)-24x+12=0\)
9,\(x^2-6x+8=0\) 10,\(x^2+2x-15=0\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
Giai phuong trinh
1.\(tan\left(x+\frac{\pi}{3}\right).tan\left(2x-\frac{\pi}{4}\right)=1\)
2.\(tan\left(x+1\right).cot\left(2x+3\right)=1\)
3.\(tan^22x+\frac{1}{cos^22x}=7\) với \(0^0< x< 360^0\)
1. ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)
\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)
\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)
2.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)
\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)
\(\Leftrightarrow2x+3=x+1+k\pi\)
\(\Rightarrow x=-2+k\pi\)
3.
ĐKXĐ: ...
\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)
\(\Leftrightarrow tan^22x+tan^22x=8\)
\(\Leftrightarrow tan^22x=4\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)
Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)
Giải các PT sau
1. \(\cos^2\left(x-30^{\cdot}\right)-\sin^2\left(x-30^{\cdot}\right)=\sin\left(x+60^{\cdot}\right)\)
2. \(\sin^22x+\cos^23x=1\)
3. \(\sin x+\sin2x+\sin3x+\sin4x=0\)
4. \(\sin^2x+\sin^22x=\sin^23x\)
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...