Chứng minh: 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^n < 1
1. Chứng minh: \(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)
2. Chứng minh: \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6
M = 3n+1.(32 + 1) + 2n+2.(2 + 1)
M = 3n.3.(9 + 1) + 2n+1.2 . 3
M = 3n.30 + 2n+1.6
M = 6.(3n.5 + 2n+1)
Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)
Chứng minh 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 với n thuộc N, n >= 4
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
1) Tính: A= 2/4.7-3/5.9+2/7.10-3/9.13+..+2/301.304-3/401.405
2) Chứng minh rằng với mọi n thuộc số tự nhiên, n lớn hơn hoặc bằng 2: 3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
3) a) Cho A=9/5^2+9/11^2+9/17^2+...+9/305^2. Chứng minh A<3/4
b) Cho C=4/3+7/3^2+10/3^3+...+3n+1/3^n với số tự nhiên khác 0. Chứng minh rằng C<11/4
4) Tính: a) =1/2+1/2^2+1/2^3+...+1/2^100
b) B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
5) So sánh: (1-1/2).(1-1/3).(1-1/4). ... .(1-1/20) với 1/21
chứng minh 1/1+2+3+4+...+n = 2.(1/n-1/n+1)
Lời giải:
$\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n(n+1)}{2}}=\frac{2}{n(n+1)}$
$=2.\frac{(n+1)-n}{n(n+1)}=2[\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}]$
$=2(\frac{1}{n}-\frac{1}{n+1})$ (đpcm)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...
Chứng minh: 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^n < 1
Chứng minh: 1/2^2+1/3^2+1/4^2+....+1/n^2<1
Đặt : \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{n\cdot n}\)
\(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{(n-1)\cdot n};M< 1-\frac{1}{n}< 1\)
Bạn có thể tham khảo nhé
Chứng minh : (1/2^2)+(1/2^3)+(1/2^4)+...+(1/2^n)<1
(1/2^2)+(1/2^3)+...+(1/2^n)<(1/1.2)+(1/2.3)+(1/3.4)+...+(1/(n+1).n)
=1-1/2+1/2-1/3+1/3-1/4+1/4-....+1/n+1-1/n
=1-1/n<1
suy ra biểu thức trên <1