Với x+y=1, tính giá trị của biểu thức:
\(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)+30\)
tính giá trị của biểu thức:
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\) với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)
Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)
câu 1. Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
b) \(B=x^2-4x+y^2-8y+6\)
câu 2. Tính giá trị của biểu thức sau: \(T=2\left(x^3+y^3\right)-3\left(x^2+v^2\right)\)với x+y=1
giúp mị với mí bn ơi
a, A = (x-1)(x+6) (x+2)(x+3)
= (x^2 + 5x -6 ) (x^2 + 5x + 6)
Đặt t = x^2 +5x
A= (t-6)(t+6)
= t^2 - 36
GTNN của A là -36 khi và ck t= 0
<=> x^2 +5x = 0
<=> x=0 hoặc x=-5
Vậy...
Cho x-y = 2, tính giá trị của biểu thức
A = \(2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(A=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+4xy\right]\)
\(A=2\left[2^3+3xy.2\right]-3\left[2^2+4xy\right]\)
\(A=2\left[28+6xy\right]-3\left[4+4xy\right]\)
\(A=56+12xy-12-12xy=56-12=44\)
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
Tính giá trị của biểu thức sau:
c) \(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\) tại \(x+y+1=0\)
\(x+y+1=0\\ \Leftrightarrow x+y=-1\)
Thay x+y=-1 vào C ta có:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)
\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)
\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)
\(\Rightarrow C=0+0+1\)
\(\Rightarrow C=1\)
\(x+y+1=0\) =>\(x+y=-1\)
- Thay \(x+y=-1\) vào C ta được:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)=1
Sao bạn doanh doanh nhắn chữ "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" quài vậy ?
1) Rút gọn biểu thức
\(\left(x+3\right)^3-\left(x-3\right)^3+3x\left(x-2\right)\)
2) Tính giá trị biểu thức
\(C=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)VỚI x-y = 2
Tính giá trị của biểu thức:
\(E=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\) với x + y = 1
\(E=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2x^2-2xy+2y^2-3x^2-3y^2\)
\(=-x^2-2xy-y^2=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\)
Tính giá trị của biểu thức
a) \(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|x\right|\right)+y\) với x = 3 và y = -2
b) \(B=\left|2x-1\right|+\left|3y+2\right|\) với x = 3 và y = -3
a, Với x = 3 và y = -2 ta có:
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)
\(A=\dfrac{5}{6}\)
Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)
\(B=\left|5\right|+\left|-7\right|\)
\(B=5+7=12\)
Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhé
Giá trị của biểu thức : \(A=3.\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\) với x+y=2
\(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2x^2+2xy-2y^2+1\)
\(=x^2+2xy+y^2+1=\left(x+y\right)^2+1=2^2+1=5\)