\(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2x^2+2xy-2y^2+1\)
\(=x^2+2xy+y^2+1=\left(x+y\right)^2+1=2^2+1=5\)
\(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2\left(x^2-xy+y^2\right)+1\)
\(=3x^2+3y^2-2x^2+2xy-2y^2+1\)
\(=x^2+2xy+y^2+1=\left(x+y\right)^2+1=2^2+1=5\)
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho biểu thức:
\(P=\dfrac{\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
1.tính giá trị biểu thức
a)A=3x\(\left(5x^2-2\right)-5x^2\left(7+3x\right)-2,5\left(2-14x^2\right)\) với x=-2
b)B=\(x^2\left(x-y\right)-2x^3\left(1+y\right)\) với x=2,y=1
Rút gọn các biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-2x^2}\), với x = -3; y = \(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\), với x = 2; y = -\(\frac{1}{2}\)
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
Cho các số x,y thỏa mãn đẳng thức:
\(^{2x^2}\)+\(^{2y^2}\)+3xy-x+y+1=0
Tính giá trị của biểu thức:
B=\(^{\left(x+y\right)^{2018}}\)+\(\left(x-2\right)^{2018}\)+\(\left(y-1\right)^{2018}\)
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)
Tính giá trị của biểu thức: \(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\) cho biết \(x+y=2\)
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên