Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Khách vãng lai đã xóa
James Pham
Xem chi tiết
Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:44

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:55

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển

Rimuru Tempest
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 20:30

Xét khai triển : (x + 1)n

Tk+1 = \(C_n^k\). xk . 110 - k = \(C_n^k\) . xk

+) Cụ thể với khai triển (x + 1)10. Số hạng chứa x8 ứng với k = 8

Số hạng x8 trong khai triển này là \(C_{10}^8\) . x8 = 45x8

+) Cụ thể với khai triển (x + 1)11. Số hạng chứa x8 ứng với k = 8 

Số hạng x8 trong khai triển này là \(C_{11}^8\) . x8 = 165x8

+) Cụ thể với khai triển (x + 1)12. Số hạng chứa x8 ứng với k = 8 

Số hạng x8 trong khai triển này là \(C_{12}^8\) . x8 = 495x8

Vậy hệ số của x8 trong khai triển của đa thức trên là : 165 + 495 + 45 = 705
Nguyễn Đức An
Xem chi tiết
Lê Song Phương
14 tháng 5 2023 lúc 20:08

Xét khai triển \(\left(x+2\right)^5\left(3x+4\right)^5=\sum\limits^5_{k=0}C^k_5x^k.2^{5-k}.\sum\limits^5_{l=0}C^l_5.3^lx^l.4^{5-l}\)

\(=\sum\limits^5_{k=0}\sum\limits^5_{l=0}C^k_5.C^l_5.2^{5-k}.3^l.4^{5-l}.x^{k+l}\)

Xét \(k+l=9\), ta có các bộ \(\left(k,l\right)\) sau thỏa mãn: \(\left(k,l\right)\in\left\{\left(4;5\right);\left(5;4\right)\right\}\) (do \(k,l\le5\))

\(\Rightarrow\) Hệ số của số hạng chứa \(x^9\) trong khai triển đã cho là \(C^4_5.C^5_5.2^{5-4}.3^5.4^{5-5}+C^5_5.C^4_5.2^{5-5}.3^4.4^{5-4}\) \(=4050\)

H Mưa_Êban
14 tháng 5 2023 lúc 17:46

*xét khai triển (x+2)^5

= > T k+1=kC4. x^4-k

Số hạng chứa x^9=>x^5-k=x^9

<=> 5-k=9=>k=-4

-->số hạng chứa x^9 là: -4C5.x^9.2^5=

 --->kết quả bạn tự tính nhé

* Cách tính như sau : thứ nhất bấm 5 rồi nhấn ship chia(:) -4 rồi nhân cho 2^5 sẽ ra kết quả 

Xét khai triển (3x+4)^5

--> File: undefined 

     Chú ý phần trả lời cái câu (3x+4)^5 là Chữ viết bằng bút màu xanh nhé

Nếu chưa hiểu rõ thì id mình sẽ hướng dẫn kĩ hơn nhé

    

lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 23:36

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

Khách vãng lai đã xóa
Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 23:01

SHTQ là: \(C^k_5\cdot\left(x^3\right)^{5-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_5\cdot x^{15-4k}\)

Số hạng chứa x^3 tương ứng với 15-4k=3

=>4k=12

=>k=3

=>Hệ số là \(C^3_5=10\)

Technology I
9 tháng 1 2024 lúc 21:54

Để tìm hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 , ta sử dụng công thức tổng hạng:

Tổng hạng = ∑ C(n, k)

Trong đó:

C(n, k) là số cấu hình có k phần tử trong tổng hạng nn là số lượng phần tử trong tổng hạngk là số lượng phần tử không chứa x

Vì ta chỉ quan tâm đến số hạng chứa x3, nên không quan tâm đến số lượng phần tử trong tổng hạng n.

Số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2.

Hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2/3.

linh khánh
Xem chi tiết
Hồng Phúc
18 tháng 12 2021 lúc 16:13

\(\left(x^2+1-x^3\right)^8=\sum\limits^8_{k=0}C^k_8.\left(x^2-x^3\right)^k\)

\(=\sum\limits^8_{k=0}C^k_8\sum\limits^k_{i=0}C^i_k.\left(x^2\right)^{k-i}\left(x^3\right)^i\)

\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C^k_8C^i_k.x^{2k+i}\)

\(\Rightarrow2k+i=8\)

Ta có: \(\left\{{}\begin{matrix}2k+i=8\\i\in N\\k\in N\\0\le i\le k\le8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}i=2\\k=3\end{matrix}\right.\)

\(\Rightarrow\) Hệ số của \(x^8\) trong khai triển là \(C^3_8C^2_3=168\).