A=\(\frac{x+3}{x-2}\)
B=\(\frac{1-2x}{x+3}\)
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
a,\(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
b,\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
c,\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
1) tính
a) \(\frac{4}{x+2}+\frac{3}{2-x}+\frac{12}{x^2-4}\)
b) \(x+\frac{x-1}{2}+\frac{x-2}{3}\)
c) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
d) x - 2 - \(\frac{x^2-10}{x+2}\)
e) \(\frac{1}{2x-2y}-\frac{1}{2x+2y}+\frac{y}{y^2-x^2}\)
f) \(\frac{1}{a+1}-\frac{3}{a^3+1}+\frac{3}{a^2-a+1}\)
g) \(\frac{4-2x+x^2}{x+2}-2-x\)
h)\(\frac{1}{x^3-x}-\frac{1}{x^2-x}+\frac{2}{x^2-1}\)
j) \(\frac{1}{2x+3}-\frac{1}{2x-3}+\frac{x-2}{2x^2-x-3}\)
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải phương trình:
a,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
b,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
\(a,\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)\(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x}{x-3}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x+1}+\frac{1}{x-3}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)-\left(x-1\right)^2+\left(x-3\right)+\left(x+1\right)}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2+2x-1+x-3+x+1=0\)
\(\Leftrightarrow5x-3=0\)
\(\Leftrightarrow x=\frac{3}{5}\left(tmđk\right)\)
Vậy ......
\(b,\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\) \(Đkxđ:....\)
\(\Leftrightarrow\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}-\frac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow-4x+8-16=10\)
\(\Leftrightarrow x=-\frac{9}{2}\)
Vậy ...............
GIÚP MÌNH VỚI!!
a) \(\frac{x}{2x-6}+\frac{x}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
b) \(\frac{x-3}{x+1}-\frac{x+1}{x+3}=\frac{x^2-x-10}{x^2+4x+3}\)
b, ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x+3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne-1\\x\ne-3\end{matrix}\right.\)
- Ta có : \(\frac{x-3}{x+1}-\frac{x+1}{x+3}=\frac{x^2-x-10}{x^2+4x+3}\)
=> \(\frac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x+1\right)}{\left(x+3\right)\left(x+1\right)}=\frac{x^2-x-10}{\left(x+1\right)\left(x+3\right)}\)
=> \(\left(x-3\right)\left(x+3\right)-\left(x+1\right)\left(x+1\right)=x^2-x-10\)
=> \(x^2-9-x^2-2x-1-x^2+x+10=0\)
=> \(-x-x^2=0\)
=> \(x\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
=> x = 0 .
Vậy phương trình có tập nghiệm là \(S=\left\{0\right\}\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne3\\x\ne-1\end{matrix}\right.\)
Ta có : \(\frac{x}{2x-6}+\frac{x}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{\left(x+1\right)\left(x-3\right)}=0\)
=> \(x\left(x+1\right)+x\left(x-3\right)-4x=0\)
=> \(2x^2-6x=0\)
=> \(x\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{0\right\}\)
Giải các phương trình sau :
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(b,\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
Rút gọn: P = \((\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}):\left(1-\frac{2x}{x^2+1}\right) \)
A = \([\frac{\left(x-1\right)^2}{5x-3+\left(x-2\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}]:\frac{x^2+x}{x^3+x}\)
B =
Tính
a) \(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)\)
b) \(\frac{x^3-3x^2+2x}{3x^2-4x+1}.\left(\frac{x-1}{x}-\frac{2x-6}{x-1}+\frac{x+1}{x-2}\right)\)
c) \(\frac{3x-3y}{2x^2-2xy+2y^2}:\frac{6x^2-12xy+6y^2}{5x^3+5y^3}:\frac{5x}{x-y}\)
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
a)\(\frac{x+3}{x}=\frac{2x+2}{2x-1}\)
b)\(\frac{5x}{2x+2}+1=\frac{-6}{x+1}\)
c)\(\frac{x+3}{x+1}+\frac{x-3}{x}=2\)
a) Điều kiện xác định: x khác 0, x khác 1/2
(x+3)(2x-1)/x(2x-1) = (2x+2)x/(2x-1)x
(x+3)(2x-1)=(2x+2)x
2x2 -x+6x-3 = 2x2 +2x
2x2 -x+6x-3-2x2 -2x = 0
3x-3=0
3x=3
x=1 ( thỏa mãn đièu kiện xác định)
Vậy phương trình dã cho có tập nghiệm là S=[1]
b) Điều kiện xác định: x khác -1
5x/2x+2 + 2x+2/2x+2 = -12/2x+2
5x+2x+2/2x+2 = -12/2x+2
7x+2/2x+2 = -12/2x+2
7x+2=-12
7x=-14
x=-2 ( thỏa mãn đièu kiện xác định)
Vậy phương trình đã cho có tập nghiệm là S=[-2]
c) Điều kiện xác định: x khác -1, x khác 0
(x+3)x/(x+1)x + (x-2)(x+1)/x(x+1) = 2x(x+1)/x(x+1)
(x+3)x+(x-2)(x+1)/x(x+1) = 2x(x+1)/x(x+1)
(x+3)x+(x-2)(x+1) = 2x(x+1)
x2 +3x+(x2 +x-2x-2)=2x2 +2x
x2 +3x+(x2 -x-2) = 2x2 +2x
x2 +3x+x2 -x-2=2x2 +2x
2x2 +2x-2=2x2 +2x
2x2 +2x-2-2x2 -2x=0
0x-2=0 ( vô lý)
Vậy phương trình này vô nghiệm
bài này thực ra mk làm ở trên lớp rùi nên mk mới trả lời
hok tot
mk quên ko nói: bạn cho dấu tương đương vào trước mỗi dòng giải phương trình nhé
a) \(\frac{x+3}{x}=\frac{2x+2}{2x-1}\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=x\left(2x+2\right)\)
\(\Leftrightarrow2x^2+x-1=2x^2+2x\)
\(\Leftrightarrow x-1=2x\)
\(\Leftrightarrow x=-1\)
b)\(\frac{5x}{2x+2}+1=\frac{-6}{x+1}\)
\(\Leftrightarrow\frac{5x+2x+2}{2\left(x+1\right)}=\frac{-12}{2\left(x+1\right)}\)
\(\Leftrightarrow7x+2=-12\)
\(\Leftrightarrow x=-2\)
c) \(\frac{x+3}{x+1}+\frac{x-3}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)+\left(x-3\right)\left(x+1\right)}{\left(x+1\right)x}=2\)
\(\Leftrightarrow x^2+3x+x^2-2x-3=2x\left(x+1\right)\)
\(\Leftrightarrow2x^2+x-3=2x^2+2x\)
\(\Leftrightarrow x-3=2x\)
\(\Leftrightarrow x=-3\)