Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thanh Huyền
Xem chi tiết
nguyễn thị bình minh
20 tháng 10 2017 lúc 22:09

biểu thức dã cho <=> ( x+\(\sqrt{x^2+2006}\) ) (\(x-\sqrt{x^2+2006}\)) (y+\(\sqrt{y^2+2006}\)) =2006 (x-\(\sqrt{x^2+2006}\))

=> - 2006 ( y + \(\sqrt{y^2+2006}\)) = 2006 ( x-\(\sqrt{x^2+2006}\))

=>y + \(\sqrt{y^2+2006}\) = \(\sqrt{x^2+2006}\) - x

=>y = \(\sqrt{x^2+2006}\) - x - \(\sqrt{y^2+2006}\) (1)

TT ta có biểu thức đã cho<=>

\(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)\left(y-\sqrt{y^2+2006}\right)=2006\) (y-\(\sqrt{y^2+2006}\))

<=> -2006 (x+\(\sqrt{x^2+2006}\)) = 2006 (\(y-\sqrt{y^2+2006}\))

<=>x+\(\sqrt{x^2+2006}\) =\(\sqrt{y^2+2006}\) - y

<=>x =\(\sqrt{y^2+2006}-\sqrt{x^2+2006}-y\) (2)

từ (1) và (2)=>x+y= - y - x

=>2 (x+y) = 0 => x+y = 0

Minh Tú
Xem chi tiết
Hung nguyen
17 tháng 8 2017 lúc 11:15

Ta có:

\(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\)

Dễ thấy \(\left\{{}\begin{matrix}\sqrt{a^2+2006}-a\ne0\\\sqrt{b^2+2006}-b\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+\sqrt{a^2+2006}\right)\left(\sqrt{a^2+2006}-a\right)\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)\left(\sqrt{b^2+2006}-b\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2006\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\2006\left(a+\sqrt{a^2+2006}\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+2006}=\sqrt{a^2+2006}-a\\a+\sqrt{a^2+2006}=\sqrt{b^2+2006}-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=\sqrt{a^2+2006}-\sqrt{b^2+2006}\left(1\right)\\a+b=\sqrt{b^2+2006}-\sqrt{a^2+2006}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ta được

\(a+b=0\)

Hoang Thiên Di
17 tháng 8 2017 lúc 9:47

Ta có : \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) (*)

Nhân liên hợp ta được :

(*)\(\Leftrightarrow\dfrac{\left(a+\sqrt{a^2+2006}\right)\left(a-\sqrt{a^2+2006}\right)}{a-\sqrt{a^2+2006}}.\)\(\dfrac{\left(b+\sqrt{b^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{b-\sqrt{b^2-2006}}=2006\)

\(\Leftrightarrow\dfrac{a^2-a^2-2006}{a-\sqrt{a^2+2006}}.\dfrac{b^2-b-2006}{b-\sqrt{b^2+2006}}=2006\)

\(\Leftrightarrow\left(-2006\right).\left(-2006\right)\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=2006\)

\(\Leftrightarrow\)\(\Leftrightarrow\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=\dfrac{1}{2006}\)

=> \(\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)=2006\) (**)

Từ (*) và (**) ta suy ra :

\(\dfrac{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)}=1\)

\(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}\)

=> \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}=\dfrac{1}{2}\)

+ , \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{1}{2}\Rightarrow2a-2\sqrt{a^2+2006}=a+\sqrt{a^2+2006}\Rightarrow a=3\sqrt{a^2+2006}\)

Tương tự : b = \(3\sqrt{b^2+2006}\)

=> a+b = \(3\left(\sqrt{a^2+2006}+\sqrt{b^2+2006}\right)\)

========================

không biết hướng làm này có đúng không nữa ... tại còn dính ẩn ...

dương minh tuấn
Xem chi tiết
Như
23 tháng 4 2018 lúc 23:20
https://i.imgur.com/R4uCQLW.jpg
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Nguyễn Huyền Anh
27 tháng 1 2017 lúc 14:05

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)

Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:37

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
8 tháng 11 2019 lúc 22:48

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

Khách vãng lai đã xóa
Lê Thanh Nhàn
8 tháng 11 2019 lúc 22:32
Khách vãng lai đã xóa
Anna Albright
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 17:13

\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)

Vậy PT có nghiệm \(x=2008\)

Quỳnh Hương
Xem chi tiết
nguyen kim chi
Xem chi tiết
Dinh Nguyen Ha Linh
14 tháng 7 2015 lúc 7:34

pn oi nhieu the nay ai ma giai cho het dc

Hoàng Nguyên Ngọc Bình
8 tháng 3 2016 lúc 10:20

bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá

Phan Nguyễn Hoàng Vinh
15 tháng 3 2016 lúc 11:00

sao mà trả ời hết đc