cho \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\) tinh x+y
bài 1: tính
\(\sqrt{4+\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
Bài 2: cho biểu thức: \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\)
Hãy tính tổng: S= x+y
biểu thức dã cho <=> ( x+\(\sqrt{x^2+2006}\) ) (\(x-\sqrt{x^2+2006}\)) (y+\(\sqrt{y^2+2006}\)) =2006 (x-\(\sqrt{x^2+2006}\))
=> - 2006 ( y + \(\sqrt{y^2+2006}\)) = 2006 ( x-\(\sqrt{x^2+2006}\))
=>y + \(\sqrt{y^2+2006}\) = \(\sqrt{x^2+2006}\) - x
=>y = \(\sqrt{x^2+2006}\) - x - \(\sqrt{y^2+2006}\) (1)
TT ta có biểu thức đã cho<=>
\(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)\left(y-\sqrt{y^2+2006}\right)=2006\) (y-\(\sqrt{y^2+2006}\))
<=> -2006 (x+\(\sqrt{x^2+2006}\)) = 2006 (\(y-\sqrt{y^2+2006}\))
<=>x+\(\sqrt{x^2+2006}\) =\(\sqrt{y^2+2006}\) - y
<=>x =\(\sqrt{y^2+2006}-\sqrt{x^2+2006}-y\) (2)
từ (1) và (2)=>x+y= - y - x
=>2 (x+y) = 0 => x+y = 0
Cho \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\). Hãy tính tổng a+b
Ta có:
\(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\)
Dễ thấy \(\left\{{}\begin{matrix}\sqrt{a^2+2006}-a\ne0\\\sqrt{b^2+2006}-b\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+\sqrt{a^2+2006}\right)\left(\sqrt{a^2+2006}-a\right)\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)\left(\sqrt{b^2+2006}-b\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2006\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\2006\left(a+\sqrt{a^2+2006}\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+2006}=\sqrt{a^2+2006}-a\\a+\sqrt{a^2+2006}=\sqrt{b^2+2006}-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=\sqrt{a^2+2006}-\sqrt{b^2+2006}\left(1\right)\\a+b=\sqrt{b^2+2006}-\sqrt{a^2+2006}\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ta được
\(a+b=0\)
Ta có : \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) (*)
Nhân liên hợp ta được :
(*)\(\Leftrightarrow\dfrac{\left(a+\sqrt{a^2+2006}\right)\left(a-\sqrt{a^2+2006}\right)}{a-\sqrt{a^2+2006}}.\)\(\dfrac{\left(b+\sqrt{b^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{b-\sqrt{b^2-2006}}=2006\)
\(\Leftrightarrow\dfrac{a^2-a^2-2006}{a-\sqrt{a^2+2006}}.\dfrac{b^2-b-2006}{b-\sqrt{b^2+2006}}=2006\)
\(\Leftrightarrow\left(-2006\right).\left(-2006\right)\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=2006\)
\(\Leftrightarrow\)\(\Leftrightarrow\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=\dfrac{1}{2006}\)
=> \(\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)=2006\) (**)
Từ (*) và (**) ta suy ra :
\(\dfrac{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)}=1\)
Và \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}\)
=> \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}=\dfrac{1}{2}\)
+ , \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{1}{2}\Rightarrow2a-2\sqrt{a^2+2006}=a+\sqrt{a^2+2006}\Rightarrow a=3\sqrt{a^2+2006}\)
Tương tự : b = \(3\sqrt{b^2+2006}\)
=> a+b = \(3\left(\sqrt{a^2+2006}+\sqrt{b^2+2006}\right)\)
========================
không biết hướng làm này có đúng không nữa ... tại còn dính ẩn ...
tìm giá trị x,y,z thỏa mãn : \(\sqrt{x-2}+\sqrt{y+2006}+\sqrt{z-2007}=\dfrac{1}{2}\left(x+y+z\right)\)
TÍNH GIÁ TRỊ CỦA \(D=\frac{x\left(x^2-yz\right)+y\left(y^2-zx\right)+z\left(z^2-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\) TẠI \(x=2004^{2005};y=2005^{2006};z=2006^{2007}\)
D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)
do đó D=\(\frac{x+y+z}{2}\)
TÍNH GIÁ TRỊ CỦA \(D=\frac{x\left(x^2-yz\right)+y\left(y^2-zx\right)+z\left(z^2-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\) TẠI \(x=2004^{2005};y=2005^{2006};z=2006^{2007}\)
giải pt = cách đặt ẩn phụ
a) \(x^2+\sqrt{x+2006}=2006\)
b) \(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
Làm chi tiết giúp mk vs
a/ ĐKXĐ: ...
Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)
Pt trở thành:
\(x^2+a=a^2-x\)
\(\Leftrightarrow x^2-a^2+x+a=0\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)
Nhớ loại nghiệm của từng pt phù hợp với (1)
b/ ĐKXĐ: ...
Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))
\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)
Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm
Vậy pt có nghiệm duy nhất \(x=0\)
\(\sqrt{x-2008}-\left(x^2-2006\right)\sqrt{2008-x}+\dfrac{1}{\sqrt{x-2007}}=1\)
\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)
Vậy PT có nghiệm \(x=2008\)
Cho \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) hãy tính tổng a+b
1 cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3 tim gia tri lon nhat cua x^2+y^2+z^2
2 cho a;b;c duong c/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
3 tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1
4 cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
5 tim gia tri lon nhat cua \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
6 phan tich da thuc thanh nhan tu \(y-5x\sqrt{y}+6x^2\)
7 cho x;y;z>0 xy+yz+xz=1 tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
8 cho a;b;c >0 c/m \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
pn oi nhieu the nay ai ma giai cho het dc
bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá