tìm x :
x2 - 5x + 4 = 0
Tìm x biết:
a/ 5x( x- 3) = x – 3 b/ x3 - x = 0 c/ x2 – 7x + 6 = 0
d/ x2 – 4 + ( x – 2)2 = 0 e/ x2 – 16 –( x +4) = 0 f/ x2 + x – 2 = 0
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Tìm x:
a)x2-4x=3.(x-4)
b)x2-5x-24=0
a: \(x^2-4x=3\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
b: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
a) pt <=> (x - 4)(x - 3) = 0
<=> x = 4 hoặc x = 3
b) pt <=> (x - 8)(x + 3) = 0
<=> x = 8 hoặc x = -3
Tìm x biết:
a) 5x.(x-1)-(x+2).(5x-7)=6
b) (x+2)2-(x2-4)=0
`a)5x(x-1)-(x+2)(5x-7)=6`
`<=>5x^2-5x-(5x^2-7x+10x-14)=6`
`<=>5x^2-5x-(5x^2+3x-14)=6`
`<=>-8x+14=6`
`<=>8x=8<=>x=1`
Vậy `x=1`
`b)(x+2)^2-(x^2-4)=0`
`<=>x^2+4x+4-x^2+4=0`
`<=>4x+8=0`
`<=>4x=-8`
`<=>x=-2`
Vậy `x=-2`
a)5x.(x-1)-(x+2).(5x-7)=6
<=> 5x2-5x-(5x2-7x+10x-14)=6
<=> 5x2-5x-5x2+7x-10x+14=6
<=> -8x+14=6
<=> -8x=-8 => x=1
Vậy x=1
b) (x+2)2-(x2-4)=0
<=> (x+2)2-(x2-22)=0 <=> (x+2)2-(x-2)(x+2)=0
<=> (x+2)[(x+2)-(x-2)]=0
<=> (x+2)(x+2-x+2)=0
<=> (x+2).4=0
=> x+2=0
=> x=-2
Vậy x=-2
Tìm x
1. x2 - 5x + 6 = 0
2. (x + 4)2 - (3x - 1)2 = 0
3, x2 - 2x + 24 = 0
4, 9x2 - 4 = 0
5, x2 + 2x - 8 = 0
1.
\(x^2-5x+6=0\\ \Rightarrow x^2-2x-3x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
2.
\(\left(x+4\right)^2-\left(3x-1\right)^2=0\\ \Rightarrow\left(x+4-3x+1\right)\left(x+4+3x-1\right)=0\\ \Rightarrow\left(-2x+5\right)\left(4x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2x+5=0\\4x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
3.
\(x^2-2x+24=0\\ \Rightarrow\left(x^2-2x+1\right)+23=0\\ \Rightarrow\left(x-1\right)^2+23=0\)
Vì (x-1)2≥0
23>0
\(\Rightarrow\left(x-1\right)^2+23>0\)
Vậy x vô nghiệm
4.
\(9x^2-4=0\\ \Rightarrow\left(3x-4\right)\left(3x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
5.
\(x^2+2x-8=0\\ \Rightarrow\left(x^2+2x+1\right)-9=0\\ \Rightarrow\left(x+1\right)^2-3^2=0\\ \Rightarrow\left(x-2\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Tìm x:
a) (x-2)2-(x2-3x)=9
b) (5x-2)2=(4-x)2
c) x2-4x-5=0
a) \(\left(x-2\right)^2-\left(x^2-3x\right)=9\)
\(\Rightarrow x^2-4x+4-x^2+3x-9=0\)
\(\Rightarrow-x-5=0\)
=> x = -5
b) \(\left(5x-2\right)^2=\left(4-x\right)^2\)
\(\Rightarrow25x^2-10x+4-16+8x-x^2=0\)
\(\Rightarrow24x^2-2x-12=0\)
\(\Rightarrow12x^2-x-6=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
c) \(x^2-4x-5=0\)
=> (x - 5).(x + 1) = 0
=> x = 5 hoặc x = -1
a)\(\left(x-2\right)^2-\left(x^2-3x\right)=9\)
\(x^2-4x+4-x^2+3x=9\)
\(-x+4=9\)
\(-x=5\)
\(x=-5\)
Tìm x:
a) (x-2)2-(x2-3x)=9
b) (5x-2)2=(4-x)2
c) x2-4x-5=0
a) \(\left(x-2\right)^2-\left(x^2-3x\right)=9\)
\(x^2-4x+4-x^2+3x=9\)
\(-x+4=9\)
-x=5
x=-5
\(\left(5x-2\right)^2=\left(4-x\right)^2\)
⇒5x-2=4-x⇒6(x-1)=0⇒x=1
hoặc -5x+2=-4+x⇒-6(x+1)=0⇒x=-1
c)\(x^2-4x-5=0\)
\(\left(x^2-4x+4\right)-9=0\)
\(\left(x-2\right)^2=9\)
⇒TH1:x-2=3⇒x=5
TH2:x-2=-3⇒x=-1
Tìm x, biết.
a) x+ 5x2 = 0 b)(x+3)2+(4+x)(4-x)=10
c) 5x( x – 1) = x - 1 d) x2 -2x -3 = 0
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
B1: Tìm x, a) 2x2-5x2+6x+13=0 b)x2-5x=-4
a) \(2x^2-5x^2+6x+13=0\)
\(\Leftrightarrow-3x^2+6x+13=0\)
\(\Leftrightarrow3x^2-6x-13=0\left(1\right)\)
\(\Delta'=9+39=48>0\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{3}\)
Pt (1) có 2 nghiệm phân biệt là :
\(\left[{}\begin{matrix}x=\dfrac{3+4\sqrt[]{3}}{3}=1+\dfrac{4\sqrt[]{3}}{3}\\x=\dfrac{3-4\sqrt[]{3}}{3}=1-\dfrac{4\sqrt[]{3}}{3}\end{matrix}\right.\)
b) \(x^2-5x=-4\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
tìm x:
x3-x2=0
3x2-5x=0
x3=x5
(2x+7)2-4(2x+7)=0
a)x3-x2=0
⇔x2(x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b)3x2-5x=0
⇔ x(3x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c)x3=x5
⇔ x3(1-x2)=0
⇔ x3(1-x)(1+x)=0
⇔\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d)(2x+7)2-4(2x+7)=0
⇔ (2x+7)(2x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
a) Ta có: \(x^3-x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) Ta có: \(3x^2-5x=0\)
\(\Leftrightarrow x\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c) Ta có: \(x^3=x^5\)
\(\Leftrightarrow x^5-x^3=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) Ta có: \(\left(2x+7\right)^2-4\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)