Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn công huy
Xem chi tiết
HT.Phong (9A5)
19 tháng 10 2023 lúc 12:09

Ta có: \(a+b+c=3\)  

Áp dụng BĐT Cauchy - Schwarz ta có:

\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)

\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}\)

\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{3^2}{2\cdot3}=\dfrac{3}{2}\)

__________________

Nhắc lại BĐT Cauchy - Schwarz:

\(\dfrac{x^2_1}{a_1}+\dfrac{x^2_2}{a_2}+\dfrac{x^2_3}{a_3}+...+\dfrac{x^2_n}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\) 

(p/s: bạn xem lại để nhé !) 

Hi Mn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

:vvv
Xem chi tiết
Yeutoanhoc
23 tháng 6 2021 lúc 16:55

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bùi Đức Anh
Xem chi tiết
bingu Tao
Xem chi tiết
Lê Song Phương
17 tháng 12 2023 lúc 21:57

Ta có \(\dfrac{1}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{1}{b^3c^3}\left(b+c\right)}=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}\)

Tương tự \(\Rightarrow VT=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{c^2a^2}{\dfrac{1}{c}+\dfrac{1}{a}}+\dfrac{a^2b^2}{\dfrac{1}{a}+\dfrac{1}{b}}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\) (BĐT B.C.S)

\(=\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{ab+bc+ca}{abc}\right)}\)

\(=\dfrac{ab+bc+ca}{2}\) (do \(abc=1\))

\(\ge\dfrac{3\sqrt[3]{abbcca}}{2}\)

\(=\dfrac{3\left(\sqrt[3]{abc}\right)^2}{2}=\dfrac{3}{2}\) (do \(abc=1\))

ĐTXR \(\Leftrightarrow a=b=c=1\)

Hồ Minh Phi
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết