Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hi Mn

+) Cho a,b,c>0 tm: abc=1 

\(CMR:a^3+b^3+c^3+\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}\ge\dfrac{9}{2}\)

Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
đấng ys
Xem chi tiết
đấng ys
Xem chi tiết
Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Hi Mn
Xem chi tiết
Chuyengia247
Xem chi tiết
Quìn
Xem chi tiết
Hi Mn
Xem chi tiết
missing you =
Xem chi tiết