Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 12:02

\(a,=\sqrt{5}-4\sqrt{5}-12\sqrt{5}=-15\sqrt{5}\\ b,=2\sqrt{3}-\dfrac{2+\sqrt{3}}{1}=2\sqrt{3}-2-\sqrt{3}=\sqrt{3}-2\\ c,=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\\ =\dfrac{2\left(x+1\right)}{2\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}\)

hoàng
Xem chi tiết
hoàng
15 tháng 9 2023 lúc 15:39

help

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 18:21

loading...  => đề sai rồi bạn

Ling ling 2k7
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 9:15

\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)

thungan nguyen
Xem chi tiết
Hoàng Anh Thắng
18 tháng 9 2021 lúc 19:12

a) \(\dfrac{12}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}-\dfrac{\sqrt{20}-5}{2-\sqrt{5}}\)

=\(\dfrac{12\left(1-\sqrt{5}\right)}{-4}+\dfrac{15\sqrt{5}}{5}-\dfrac{\left(\sqrt{20}-5\right)\left(2+\sqrt{5}\right)}{-1}\)

=\(-3+3\sqrt{5}-\sqrt{5}+3\sqrt{5}+4\sqrt{5}+10-10-5\sqrt{5}\)

=\(5\sqrt{5}-3\)

b)\(\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}}\)

=\(\dfrac{2x-3x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

=\(\dfrac{-x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

Lương Tấn	Sang
Xem chi tiết

a: \(\sqrt{20}+\sqrt{80}-\sqrt{45}\)

\(=2\sqrt5+4\sqrt5-3\sqrt5\)

\(=6\sqrt5-3\sqrt5=3\sqrt5\)

b: \(4\cdot\sqrt{\frac29}+\sqrt2+\sqrt{\frac{1}{18}}\)

\(=4\cdot\frac{\sqrt2}{3}+\sqrt2+\sqrt{\frac{2}{36}}\)

\(=\frac43\sqrt2+\sqrt2+\frac16\sqrt2=\sqrt2\left(\frac43+1+\frac16\right)=\sqrt2\left(\frac86+\frac16+1\right)=\frac{15}{6}\cdot\sqrt2=\frac52\sqrt2\)

c: \(\frac{1}{\sqrt3-1}-\frac{1}{\sqrt3+1}\)

\(=\frac{\sqrt3+1-\left(\sqrt3-1\right)}{\left(\sqrt3+1\right)\left(\sqrt3-1\right)}\)

\(=\frac{\sqrt3+1-\sqrt3+1}{2}=\frac22=1\)

d: \(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+1}+1\)

\(=\frac{\sqrt{x}+1-\left(\sqrt{x}-1\right)-\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1-\sqrt{x}+1-x+1}{x-1}=\frac{-x+3}{x-1}\)

e: \(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\)

\(=\frac{x-4+10-x}{x-4}=\frac{6}{x-4}\)

g: \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)

\(=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-2-2\left(\sqrt{x}+2\right)+\sqrt{x}}{x-4}=\frac{2\sqrt{x}-2-2\sqrt{x}-4}{x-4}=\frac{-6}{x-4}\)

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:31

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

Ahihi
Xem chi tiết
YangSu
17 tháng 8 2023 lúc 10:18

\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)

\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).

Phong
17 tháng 8 2023 lúc 10:19

a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)

\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)

\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)

\(A=-\sqrt{3}+1+\sqrt{3}+1\)

\(A=2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)

\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)

\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

\(B=1^2-\left(\sqrt{x}\right)^2\)

\(B=1-x\)

b) Ta có: \(A=4\sqrt{B}\)

\(\Rightarrow2=4\sqrt{1-x}\)

\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\)

\(\Leftrightarrow x=1-\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

Võ Thị Kim Dung
Xem chi tiết
Võ Thị Kim Dung
1 tháng 2 2018 lúc 20:03

giair phương trình

Thiên Yết
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290