\(x+\sqrt{x^2-1}+\dfrac{1}{x-\sqrt{x^2-1}}=20\)
Tính:
a.\(\sqrt{5}-2\sqrt{20}-3\sqrt{80}\)
b.\(\dfrac{6}{\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}}{x-1}\) với x > 0;x ≠ 1
\(a,=\sqrt{5}-4\sqrt{5}-12\sqrt{5}=-15\sqrt{5}\\ b,=2\sqrt{3}-\dfrac{2+\sqrt{3}}{1}=2\sqrt{3}-2-\sqrt{3}=\sqrt{3}-2\\ c,=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\\ =\dfrac{2\left(x+1\right)}{2\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}\)
4.
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)-\left(\dfrac{1}{x+\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
a. Rút gọn A.
b. Tính x khi \(A=\dfrac{1}{2}\)
5. CMR
\(\left(\dfrac{\sqrt{30}}{\sqrt{3}}-\dfrac{\sqrt{20}}{\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right).\sqrt{4+\sqrt{15}}=2\)
nhanh lên nha
Giúp với
1) Thu gọn A
\(A=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
2) Tính A biết \(x=\left(\dfrac{2-\sqrt{5}}{2+\sqrt{5}}-\dfrac{2+\sqrt{5}}{2-\sqrt{5}}\right):\sqrt{20}\)
\(A=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(x=\dfrac{9-4\sqrt{5}-9-4\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}:2\sqrt{5}=\dfrac{-8\sqrt{5}}{-2\sqrt{5}}=4\\ \Leftrightarrow\sqrt{x}=2\\ \Leftrightarrow A=\dfrac{2-1}{2+2}=\dfrac{1}{4}\)
Bài: thực hiện phép tính
a. \(\dfrac{12}{1+\sqrt[]{5}}+\dfrac{15}{\sqrt[]{5}}-\dfrac{\sqrt[]{20}-5}{2-\sqrt[]{5}}\)
b. \(\dfrac{2\sqrt[]{x}}{\sqrt[]{x}-1}-\dfrac{3x}{x-\sqrt[]{x}}+\dfrac{1}{\sqrt[]{x}}\left(x>0,x\ne1\right)\)
a) \(\dfrac{12}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}-\dfrac{\sqrt{20}-5}{2-\sqrt{5}}\)
=\(\dfrac{12\left(1-\sqrt{5}\right)}{-4}+\dfrac{15\sqrt{5}}{5}-\dfrac{\left(\sqrt{20}-5\right)\left(2+\sqrt{5}\right)}{-1}\)
=\(-3+3\sqrt{5}-\sqrt{5}+3\sqrt{5}+4\sqrt{5}+10-10-5\sqrt{5}\)
=\(5\sqrt{5}-3\)
b)\(\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}}\)
=\(\dfrac{2x-3x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
=\(\dfrac{-x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
rút gọn
a)\(\sqrt{20}\)+\(\sqrt{80}\)-\(\sqrt{45}\)
b)4.\(\sqrt{\dfrac{2}{9}}\)+\(\sqrt{2}\)+\(\sqrt{\dfrac{1}{18}}\)
c)\(\dfrac{1}{\sqrt{3}-1}\)-\(\dfrac{1}{\sqrt{3}+1}\)
d)\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}+1}\)+1
e)\(\sqrt{x}\)-2+\(\dfrac{10-x}{\sqrt{x}+2}\)
g)\(\dfrac{1}{\sqrt{x}+2}\)-\(\dfrac{2}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}}{4-x}\)
a: \(\sqrt{20}+\sqrt{80}-\sqrt{45}\)
\(=2\sqrt5+4\sqrt5-3\sqrt5\)
\(=6\sqrt5-3\sqrt5=3\sqrt5\)
b: \(4\cdot\sqrt{\frac29}+\sqrt2+\sqrt{\frac{1}{18}}\)
\(=4\cdot\frac{\sqrt2}{3}+\sqrt2+\sqrt{\frac{2}{36}}\)
\(=\frac43\sqrt2+\sqrt2+\frac16\sqrt2=\sqrt2\left(\frac43+1+\frac16\right)=\sqrt2\left(\frac86+\frac16+1\right)=\frac{15}{6}\cdot\sqrt2=\frac52\sqrt2\)
c: \(\frac{1}{\sqrt3-1}-\frac{1}{\sqrt3+1}\)
\(=\frac{\sqrt3+1-\left(\sqrt3-1\right)}{\left(\sqrt3+1\right)\left(\sqrt3-1\right)}\)
\(=\frac{\sqrt3+1-\sqrt3+1}{2}=\frac22=1\)
d: \(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+1}+1\)
\(=\frac{\sqrt{x}+1-\left(\sqrt{x}-1\right)-\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1-\sqrt{x}+1-x+1}{x-1}=\frac{-x+3}{x-1}\)
e: \(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\)
\(=\frac{x-4+10-x}{x-4}=\frac{6}{x-4}\)
g: \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-2-2\left(\sqrt{x}+2\right)+\sqrt{x}}{x-4}=\frac{2\sqrt{x}-2-2\sqrt{x}-4}{x-4}=\frac{-6}{x-4}\)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
A=\(2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)
B=\(\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\) (0 nhỏ hơn hoặc bằng x; x khác 1)
a) Rút gọn A, B
b) Tìm giá trị của x đề A=4\(\sqrt{B}\)
Help meeeeeeeeeeee
\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)
\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).
a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)
\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)
\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)
\(A=-\sqrt{3}+1+\sqrt{3}+1\)
\(A=2\)
\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
\(B=1^2-\left(\sqrt{x}\right)^2\)
\(B=1-x\)
b) Ta có: \(A=4\sqrt{B}\)
\(\Rightarrow2=4\sqrt{1-x}\)
\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)
\(\Leftrightarrow1-x=\dfrac{1}{4}\)
\(\Leftrightarrow x=1-\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
\(20\sqrt{\dfrac{x-2}{x+1}}-5\sqrt{\dfrac{x+2}{x-1}}=-28\sqrt[4]{\dfrac{x^2-4}{x^2-1}}\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290