Tìm x biết x6 - 3x3 + 2 = 0
Tìm x biết ( 2 x 4 – 3 x 3 + x 2 ) : - 1 2 x 2 + 4 ( x – 1 ) 2 = 0
A. x = -1
B. x = 2
C. x = 1
D. x = 0
Ta có
( 2 x 4 – 3 x 3 + x 2 ) : - 1 2 x 2 + 4 ( x – 1 ) 2 = 0 ⇔ 2 x 4 : ( - 1 2 x 2 ) - 3 x 3 : ( - 1 2 x 2 ) + x 2 : ( - 1 2 x 2 ) + 4 ( x 2 - 2 x + 1 ) = 0 ⇔ - 4 x 2 + 6 x – 2 + 4 x 2 – 8 x + 4 = 0
ó -2x + 2 = 0
ó x = 1
Đáp án cần chọn là: C
Bài 1: Giải phương trình:
a) ( x+1)2 (x+2) + ( x – 1)2 ( x- 2) = 12
b) x4 + 3x3 + 4x2 + 3x + 1 = 0
c) x5 – x4 + 3x3 + 3x2 –x + 1 = 0
Bài 2: Chứng minh rằng các phương trình sau vô nghiệm
a) x4 – x3 + 2x2 – x + 1 = 0
b) x4 + x3 + x2 + x + 1 = 0
c) x4 – 2x3 +4x2 – 3x +2 = 0
d) x6+ x5+ x4 + x3 + x2 + x + 1 = 0
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
2.
a. \(x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+x^2-x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(vn\right)\\x^2-x+1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
b.
\(x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow x\left(x^3+1\right)+x^3+1+x^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)+x^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)+x^2=0\)
Mà \(\left\{{}\begin{matrix}\left(x+1\right)^2\left(x^2-x+1\right)\ge0\\x^2\ge0\end{matrix}\right.\)
Nên dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\) ko tồn tại x thỏa mãn
Tìm x biết:
a) x 6 + 2 x 3 +1 = 0; b) x(x - 5) = 4x - 20;
c) x 4 -2 x 2 =8-4 x 2 ; d) ( x 3 - x 2 ) - 4 x 2 + 8x-4 = 0.
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
Thực hiện các phép tính sau:
a) x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 với x ≠ ± 1 ;
b) a 3 + 2 a 2 − a − 2 3 a + 15 . 1 a − 1 − 2 a + 1 + 1 a + 2 với a ≠ − 5 ; − 2 ; ± 1 .
a) Ta có x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 = 3 x x 2 − 1
b) Gợi ý: a 3 + 2 a 2 - a - 2 = (a - 1)(a + 1) (a + 2)
Thực hiện phép tính từ trái qua phải thu được: = 1 3
tìm X1, X2,X3,X4,X5,X6,BIẾT:
X1+X2=X3+X4=X5+X6=2,BIẾT :
X1+X2+X3+X4+X5+X6=0
X1+X2=X3+X4=X5+X6=2
nên X1+X2+X3+X4+X5+X6=0
2+2+2=0
6=0(loại)
vậy không có giá trị nào thỏa mãn đề
sắp sếp đa thức sau theo lũy thừa tăng dần của biến
g(x)=-5+3x9-2x+3x2+x6+2x-3x3-3x2
g(x) = -5 + 3x⁹ - 2x + 3x² + x⁶ + 2x - 3x³ - 3x²
= -5 + (-2x + 2x) + (3x² - 3x²) - 3x³ + x⁶ + 3x⁹
= -5 - 3x³ + x⁶ + 3x⁹
g(x) = -5 + 3x⁹ - 2x + 3x² + x⁶ + 2x - 3x³ - 3x²
= -5 + (-2x + 2x) + (3x² - 3x²) - 3x³ + x⁶ + 3x⁹
= -5 - 3x³ + x⁶ + 3x⁹
1. Thu gọn đơn thức sau, cho biết phần hệ số, phần biến, bậc của đơn thức(x,y là biến)
a. -ax(xy3)2(-by)3
b. xy(-ax)2(-by)3
2. Thu gọn và sắp xếp đa thức sau theo lũy thừa giảm dần của biến
P(x)= 5x-4x4+x6+3-2x3-7x-x7+1-2x6+3x3+x7
2.
Bài 1:
a) Ta có: \(-ax\left(xy^3\right)^2\cdot\left(-by\right)^3\)
\(=-a\cdot x\cdot x^2\cdot y^6\cdot\left(-b\right)^3\cdot y^3\)
\(=abx^3y^9\)
b) Ta có: \(xy\cdot\left(-ax\right)^2\cdot\left(-by\right)^3\)
\(=xy\cdot a^2\cdot x^2\cdot b^3\cdot y^3\)
\(=a^2b^3x^3y^4\)
Bài 2:
Ta có: \(P\left(x\right)=5x-4x^4+x^6+3-2x^3-7x-x^7+1-2x^6+3x^3+x^7\)
\(=\left(-x^7+x^7\right)+\left(x^6-2x^6\right)-4x^4+\left(-2x^3+3x^3\right)+\left(5x-7x\right)+\left(3+1\right)\)
\(=-x^6-4x^4+x^3-2x+4\)
1. Thu gọn đơn thức sau, cho biết phần hệ số, phần biến, bậc của đơn thức(x,y là biến)
a. -ax(xy3)2(-by)3
b. xy(-ax)2(-by)3
Giải :
a. \(-ax\left(xy^3\right)^2\left(-by\right)^3=-a\cdot x\cdot x^2\cdot\left(y^3\right)^2\cdot\left(-b\right)^3\cdot y^3=-a\cdot\left(-b\right)^3\cdot\left(x\cdot x^2\right)\cdot\left(y^6\cdot y^3\right)=ab^3x^3y^9\)
Phần hệ số : ab3 . Phần biến x3y9
Bậc của đơn thức : 3+9=12
b. \(xy\left(-ax\right)^2\left(-by\right)^3=-a^2b^3x^3y^3\)
Phần hệ số : -a2b3. phần biến x3y3
Bậc : 3+3=6
Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
Tính P(x) + Q(x) và P(x) – Q(x).
Ta đặt và thực hiện phép tính P(x) + Q(x) và P(x) – Q(x) có
Vậy: P(x) + Q(x) = – 6 + x + 2x2 – 5x3 + 2x5 – x6
P(x) – Q(x) = – 4 – x – 3x3 + 2x4 - 2x5 – x6
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Tìm x
a) (2x-5)2-(5+2x)=0
b) 27x3-54x2+36x=0
c)(x3+8)-(x+2)(x-4)=0
d)x6-1=0
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
c)(x^3+ 8) - (x + 2)(x - 4) = 0
<=> x^3 -x^2 + 2x +8 + 8 = 0
<=> x^3 -x^2 + 2x + 16 = 0
<=> (x+2)(x^2-3x+8) = 0
=> x = -2