Bài 1:
a) Ta có: \(-ax\left(xy^3\right)^2\cdot\left(-by\right)^3\)
\(=-a\cdot x\cdot x^2\cdot y^6\cdot\left(-b\right)^3\cdot y^3\)
\(=abx^3y^9\)
b) Ta có: \(xy\cdot\left(-ax\right)^2\cdot\left(-by\right)^3\)
\(=xy\cdot a^2\cdot x^2\cdot b^3\cdot y^3\)
\(=a^2b^3x^3y^4\)
Bài 2:
Ta có: \(P\left(x\right)=5x-4x^4+x^6+3-2x^3-7x-x^7+1-2x^6+3x^3+x^7\)
\(=\left(-x^7+x^7\right)+\left(x^6-2x^6\right)-4x^4+\left(-2x^3+3x^3\right)+\left(5x-7x\right)+\left(3+1\right)\)
\(=-x^6-4x^4+x^3-2x+4\)
1. Thu gọn đơn thức sau, cho biết phần hệ số, phần biến, bậc của đơn thức(x,y là biến)
a. -ax(xy3)2(-by)3
b. xy(-ax)2(-by)3
Giải :
a. \(-ax\left(xy^3\right)^2\left(-by\right)^3=-a\cdot x\cdot x^2\cdot\left(y^3\right)^2\cdot\left(-b\right)^3\cdot y^3=-a\cdot\left(-b\right)^3\cdot\left(x\cdot x^2\right)\cdot\left(y^6\cdot y^3\right)=ab^3x^3y^9\)
Phần hệ số : ab3 . Phần biến x3y9
Bậc của đơn thức : 3+9=12
b. \(xy\left(-ax\right)^2\left(-by\right)^3=-a^2b^3x^3y^3\)
Phần hệ số : -a2b3. phần biến x3y3
Bậc : 3+3=6