x.y=-15
tìm x và y
x/1,2=y/1,8 và x+y=15
Tìm x,y
ÁP dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}\)=\(\dfrac{x+y}{1,2+1,8}\)=\(\dfrac{15}{3}\)=5
Vậy x=5.1,2=6
y=5.1,8=9
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}=\dfrac{x+y}{1,2+1,8}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=9\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{1,2}=\dfrac{y}{1,8}=\dfrac{x+y}{1,2+1,8}=\dfrac{15}{3}=5\)
\(\dfrac{x}{1,2}=5\Rightarrow x=6\\ \dfrac{y}{1,8}=5\Rightarrow y=9\)
x/2 = y/3 và x + y = -15
tìm x;y giúp luôn đi mà
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=-\dfrac{15}{5}=-3\)
=>x=-6; y=-9
`# \text {Ryo}`
`x/2 = y/3` và `x + y = -15`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
`=> x/2 = y/3 = -3`
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=3\cdot\left(-3\right)=-9\end{matrix}\right.\)
Vậy, `x = -6; y = -9.`
Cho các số thực x;y thỏa mãn: xy+x+y=15
Tìm GTNN của A=x2+y2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
cái này x,y phải là số thực dương chứ nhỉ
\(xy+x+y=15< =>x\left(y+1\right)+\left(y+1\right)=16\)
\(< =>\left(x+1\right)\left(y+1\right)=16\)
đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\)\(=>a.b=16\)
Ta có:
\(a^2-2ab+b^2\ge0\)
=> \(a^2+b^2+2ab-4ab\ge0\)\(=>\left(a+b\right)^2\ge4ab\)\(< =>\left(x+y+2\right)^2\ge4.16=64\)
\(=>x+y+2\ge\sqrt{64}=>x+y\ge\sqrt{64}-2=6\)
\(=>\left(x+y\right)^2=6^2=36\)
lại có \(\left(x-y\right)^2\ge0=>\left(x+y\right)^2+\left(x-y\right)^2\ge36\)
\(< =>x^2+2xy+y^2+x^2-2xy+y^2\ge36\)
\(< =>2\left(x^2+y^2\right)\ge36=>x^2+y^2\ge18\)
dấu"=" xảy ra<=>x=y=3=>Min A=18
18/15+x=4/15
tìm x
`18/15 +x=4/15`
`=> x= 4/15 -18/15`
`=> x=-14/15`
Vậy `x=-14/15`
tìm các số nguyên x,y sau
a)x.y=-2
b)x.y=-3 và x<y
c)(x+1)(y-3)=-5
d)x.y=-11
e)x.y=-3 và x<y
f)(x-2)(y+5)=-3
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: (x,y)∈{(−9;1);(−1;9);(−3;3)}(x,y)∈{(−9;1);(−1;9);(−3;3)}
b: (x,y)∈{(1;7);(−7;−1)}(x,y)∈{(1;7);(−7;−1)}
c: (x,y)∈{(11;−1);(−11;1)}
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
tìm các số x,y nguyên ,biết:
a)x.y=5
b)x.y=5 và x>y
c)(x+1).(y-2)=-5
d)x.y=-3
e)x.y=-3 và x<y
g)(x-1).(y+1)=-3
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
Tìm 2 số x và y
a/ x+y=7 và x.y=12
b/ x.x + y.y =5 và x.y = 2
c/ x.x +y.y =13 và x.y = 6
a. x.y=12
=> x và y thuộc Ư(12)={1;3;4;12}
trong các số trên chỉ có 3+4=7
=> x=3, y=4 hoặc x=4, a=7
b và c suy luận tương tự!
Tìm hai số x và y sao cho;
a,x+y = x.y =x/y
b,x-y =x.y =x/y
a) xy = \(\frac{x}{y}\) <=> xy2 = x <=> y2 = 1
<=> y = + 1
- Nếu y = 1 có x + 1 = x <=> 0 = 1 (loại)
- Nếu y = -1 có x - 1 = -x <=> x = \(\frac{1}{2}\) (thỏa mãn)
Vậy x = \(\frac{1}{2}\) và y = -1
b) Tương tự phần a được y = + 1
- Nếu y = 1 có x - 1 = x <=> 0 = 1 (loại)
- Nếu y = -1 có x + 1 = -x <=> x = \(-\frac{1}{2}\) (thỏa mãn)
Vậy x = \(-\frac{1}{2}\) và y = -1