Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ minh châu

Cho các số thực x;y thỏa mãn: xy+x+y=15

Tìm GTNN của A=x2+y2

Akai Haruma
19 tháng 6 2021 lúc 23:36

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

missing you =
19 tháng 6 2021 lúc 23:13

cái này x,y phải là số thực dương chứ nhỉ

\(xy+x+y=15< =>x\left(y+1\right)+\left(y+1\right)=16\)

\(< =>\left(x+1\right)\left(y+1\right)=16\)

đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\)\(=>a.b=16\)

Ta có:

 \(a^2-2ab+b^2\ge0\)

=> \(a^2+b^2+2ab-4ab\ge0\)\(=>\left(a+b\right)^2\ge4ab\)\(< =>\left(x+y+2\right)^2\ge4.16=64\)

\(=>x+y+2\ge\sqrt{64}=>x+y\ge\sqrt{64}-2=6\)

\(=>\left(x+y\right)^2=6^2=36\)

lại có \(\left(x-y\right)^2\ge0=>\left(x+y\right)^2+\left(x-y\right)^2\ge36\)

\(< =>x^2+2xy+y^2+x^2-2xy+y^2\ge36\)

\(< =>2\left(x^2+y^2\right)\ge36=>x^2+y^2\ge18\)

dấu"=" xảy ra<=>x=y=3=>Min A=18

 


Các câu hỏi tương tự
nguyen phuong ha
Xem chi tiết
Tạ Uyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nga Phạm
Xem chi tiết
Lê Thị Diệu Hiền
Xem chi tiết
Đặng Mai Phương
Xem chi tiết
Mỹ Hạnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết