\(^{\dfrac{7^{10}+7^4}{7^8+7^6}}\)
C1: Tính
a,\(\dfrac{7}{8}+\dfrac{10}{16}\)
b,\(\dfrac{12}{4}+\dfrac{6}{5}\)
c,\(\dfrac{23}{9}x\dfrac{4}{7}\)
d,\(\dfrac{8}{9}:\dfrac{6}{4}\)
\(\dfrac{14+10}{16}=\dfrac{24}{16}\)
\(\dfrac{60+24}{20}=\dfrac{84}{20}\)
\(\dfrac{92}{63}\)
\(\dfrac{32}{54}\)
a,(-4) .15 + (-25) .4
b,8 .(-7) .125
c,\(\dfrac{3}{4}\)+\(\dfrac{-5}{6}\)
d,\(\dfrac{-5}{7}\) .\(\dfrac{3}{10}\) +\(\dfrac{-5}{7}\) .\(\dfrac{9}{5}\)
a)\(-160\)
b)\(-7000\)
c)\(-\dfrac{1}{12}\)
d)\(-\dfrac{3}{2}\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
bài 1 :
a) \(\dfrac{2}{5}+\dfrac{3}{8}=\) b)\(\dfrac{7}{6}-\dfrac{2}{3}=\) c)\(\dfrac{5}{9}\times6\) d)\(\dfrac{8}{5}:\dfrac{4}{7}=\)
bài 2:
a) \(\dfrac{4}{5}+\) x =\(\dfrac{5}{6}\) b)x : \(\dfrac{7}{10}=5\)
bài 3 : hai xe ô tô chở được tất cả 16 tấn 8 tạ hàng . Xe ô tô thứ nhất chở được nhiều hơn xe ô tô thứ hai 2 tấn 6 tạ hàng . Hỏi mỗi xe chở được bao nhiêu tạ hàng
bài 4 :
145 \(\times\) 69 + 22 x 145 +145 x 8 + 145 =
bài 1
a)\(=\dfrac{16}{40}+\dfrac{15}{40}=\dfrac{31}{40}\)
b)\(=\dfrac{7}{6}-\dfrac{4}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
c)\(=\dfrac{30}{9}=\dfrac{10}{3}\)
d)\(=\dfrac{8}{5}\times\dfrac{7}{4}=\dfrac{56}{20}=\dfrac{14}{5}\)
bài 2
a)\(x=\dfrac{5}{6}-\dfrac{4}{5}=\dfrac{25}{30}-\dfrac{24}{30}=\dfrac{1}{30}\)
b)\(x=5\times\dfrac{10}{7}=\dfrac{50}{7}\)
bài 4 :
145 ×× 69 + 22 x 145 +145 x 8 + 145
\(=145\times\left(69+22+8+1\right)=145\times100=14500\)
bài 1:
a, \(\dfrac{2}{5}+\dfrac{3}{8}=\dfrac{16}{40}+\dfrac{15}{40}=\dfrac{31}{40}\)
b,\(\dfrac{7}{6}-\dfrac{2}{3}=\dfrac{7}{6}-\dfrac{4}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
c,\(\dfrac{5}{9}x6=\dfrac{5}{9}x\dfrac{6}{1}=\dfrac{30}{9}\)
d,\(\dfrac{8}{5}:\dfrac{4}{7}=\dfrac{8}{5}x\dfrac{7}{4}=\dfrac{14}{5}\)
bài 2 :
\(a,\dfrac{4}{5}+x=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}-\dfrac{4}{5}\)
\(x=\dfrac{1}{30}\)
b, \(x:\dfrac{7}{10}=5\)
\(x\) \(=5x\dfrac{7}{10}\)
\(x\) \(=\dfrac{35}{10}\)
bài 3 :
đổi :16 tấn 8 tạ = 168 tạ
2 tấn 6 tạ = 26 tạ
xe ô tô thứ nhất chở số tạ hàng là:
( 168 + 26 ) : 2= 97 ( tạ)
xe ô tô thứ hai chở số tạ hàng là:
97 - 26 = 71 ( tạ)
đáp số :xe ô tô thứ nhất : 97 tạ thóc
xe ô tô thứ hai : 71 tạ thóc
Tính
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{14}+\dfrac{7}{10}}\)
Thực hiện phép tính (hợp lí nếu có thể):
a) \(13\dfrac{2}{7}\) : (\(\dfrac{-8}{9}\)) + \(2\dfrac{5}{7}\) : (\(\dfrac{-8}{9}\))
b) (\(\dfrac{-6}{11}\)) . \(\dfrac{7}{10}\) . (\(\dfrac{11}{-6}\)) . (-20)
c) (\(-1\dfrac{1}{2}\)) : \(\dfrac{3}{4}\) . (\(-4\dfrac{1}{2}\))
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
Bài 4: So sánh:
a. \(\dfrac{2}{3}\)và\(\dfrac{1}{4}\)
b. \(\dfrac{7}{10}\)và\(\dfrac{7}{8}\)
c. \(\dfrac{6}{7}\)và\(\dfrac{3}{5}\)
d. \(\dfrac{14}{21}\)và\(\dfrac{60}{72}\)
\(a:ta.c\text{ó}:BCNN:12\\ \dfrac{2}{3}=\dfrac{2\cdot4}{3\cdot4}=\dfrac{8}{12};\dfrac{1}{4}=\dfrac{1\cdot3}{4\cdot3}=\dfrac{3}{12}\\ v\text{ì }\dfrac{8}{12}< \dfrac{3}{12}n\text{ê}n\dfrac{2}{3}< \dfrac{1}{4}\\ b:ta.c\text{ó}:\\ 10=2\cdot5\\ 8=2^3\\ \Rightarrow BCNN=2^3\cdot5=8\cdot5=40\\ \dfrac{7}{10}=\dfrac{7\cdot4}{10\cdot4}=\dfrac{28}{40};\dfrac{7}{8}=\dfrac{7\cdot5}{8\cdot5}=\dfrac{35}{40}\\ v\text{ì }\dfrac{28}{40}< \dfrac{35}{40}n\text{ê}n\dfrac{7}{10}< \dfrac{7}{8}\\ c:ta.c\text{ó}:\\ 7=7;5=5\\ \Rightarrow BCNN=7\cdot5=35\\ \dfrac{6}{7}=\dfrac{6\cdot5}{7\cdot5}=\dfrac{30}{35};\dfrac{3}{5}=\dfrac{3\cdot7}{5\cdot7}=\dfrac{21}{35}\\ v\text{ì }\dfrac{30}{35}>\dfrac{21}{35}n\text{ê}n\dfrac{6}{7}>\dfrac{3}{5}\\ d:ta.c\text{ó}:\\ 21=3\cdot7\\ 72=2^3\cdot3^2\\ \Rightarrow BCNN=2^3\cdot3^2\cdot7=504\\ \dfrac{14}{21}=\dfrac{14\cdot24}{21\cdot24}=\dfrac{336}{504};\dfrac{60}{72}=\dfrac{60\cdot7}{72\cdot7}=\dfrac{420}{504}\\ v\text{ì }\dfrac{336}{504}< \dfrac{420}{504}n\text{ê}n\dfrac{14}{21}< \dfrac{60}{72}\)
BT2: Tính nhanh
1) \(\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}-\dfrac{8}{9}+\dfrac{10}{9}-\dfrac{5}{6}+\dfrac{6}{7}-\dfrac{7}{8}+\dfrac{8}{9}\)
2) \(\dfrac{1}{13}+\dfrac{16}{7}+\dfrac{3}{105}-\dfrac{9}{7}-\dfrac{-12}{13}\)
1) \(\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}-\dfrac{8}{9}+\dfrac{10}{9}-\dfrac{5}{6}+\dfrac{6}{7}-\dfrac{7}{8}+\dfrac{8}{9}\)
\(=\left(\dfrac{5}{6}-\dfrac{5}{6}\right)-\left(\dfrac{6}{7}+\dfrac{6}{7}\right)+\left(\dfrac{7}{8}-\dfrac{7}{8}\right)-\left(\dfrac{8}{9}+\dfrac{8}{9}\right)+\dfrac{10}{9}\)
\(=0-0+0-0+\dfrac{10}{9}\)
\(=\dfrac{10}{9}\)
2) \(\dfrac{1}{13}+\dfrac{16}{7}+\dfrac{3}{105}-\dfrac{9}{7}-\dfrac{-12}{13}\)
\(=\left(\dfrac{1}{13}-\left(-\dfrac{12}{13}\right)\right)+\left(\dfrac{16}{7}-\dfrac{9}{7}\right)+\dfrac{3}{105}\)
\(=1+1+\dfrac{3}{105}\)
\(=\dfrac{213}{105}=\dfrac{71}{35}\)
Thực hiện phép tính (hợp lí nếu có thể):
a) (\(\dfrac{-6}{11}\)) . \(\dfrac{7}{10}\) . \(\dfrac{11}{-6}\) . (-20)
b) (\(-1\dfrac{1}{2}\)) : \(\dfrac{3}{4}\) . \(-4\dfrac{1}{2}\))
c) \(13\dfrac{2}{7}\) : (\(\dfrac{-8}{9}\)) + \(2\dfrac{5}{7}\) : (\(\dfrac{-8}{9}\))
\(a.\left[-\dfrac{6}{11}.\dfrac{11}{-6}\right].\dfrac{7}{10}.\left(-20\right)=1.7.\left(-2\right)=-14\)
\(b.\dfrac{-1}{2}:\dfrac{3}{4}.\dfrac{-7}{2}=\dfrac{7}{4}:\dfrac{3}{4}=\dfrac{7}{3}\)
\(c.\dfrac{93}{7}:-\dfrac{8}{9}+\dfrac{19}{7}:\dfrac{-8}{9}=\left(\dfrac{93}{7}+\dfrac{19}{7}\right):-\dfrac{8}{9}=\dfrac{-9}{8}.\dfrac{112}{7}=-18\)