Tìm min với \(x\ge\dfrac{-1}{2}\)
\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
Với \(x\ge-\dfrac{1}{2}\)
Tìm GTLN của \(P=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)
\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)
\(P_{max}=5\) khi \(x=1\)
Cho x\(\ge-\dfrac{1}{2}\). Tìm GTLN của A=\(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
Áp dụng BĐT cosi:
\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
bài 1:tìm min A=\(\dfrac{5x^2-12x+8}{\left(x-1\right)^2}\)
bài 2: chứng minh với mọi n\(\in\)N* và n\(\ge\)3:
\(\dfrac{1}{9}+\dfrac{1}{25}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
bài 3: tìm min, max của A=2x+3y biết \(2x^2+3y^2\le5\)
bài 4: tìm min của B=\(\sqrt{x-1}+\sqrt{5-x}\)
và A=\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
ai giải được là thiên tài!
Tìm Min và Max(nếu có)
A=2x-\(\sqrt{x}\)
B=x+\(\sqrt{x}\)
C=1+\(\sqrt{2-x}\)
D=\(\sqrt{-x^2+2x+5}\)
E=\(\dfrac{1}{2x-\sqrt{x}+3}\)
F=\(\dfrac{1}{3-\sqrt{1-x^2}}\)
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$
Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$
Tìm min :
A = \(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\) 2x với \(x\ge-\frac{1}{2}\)
giúp mình nhé mọi người.
Cho biểu thức A=\(\sqrt{x^2+2x+\frac{3}{4}+\sqrt{x^2+3x+\frac{9}{4}}}\) với x\(\ge\frac{-3}{2}\)
1. Tìm min A
2. Tìm các giá trị của x, biết 2A=\(2x^3+5x^2+5x+3\)
bài 1:tìm min A=\(\dfrac{5x^2-12x+8}{\left(x-1\right)^2}\)
bài 2: chứng minh với mọi n\(\in\)N* và n\(\ge\)3:
\(\dfrac{1}{9}+\dfrac{1}{25}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
bài 3: tìm min, max của A=2x+3y biết \(2x^2+3y^2\le5\)
bài 4: tìm min của B=\(\sqrt{x-1}+\sqrt{5-x}\)
và A=\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
Bài 3:
Áp dụng BĐT Bunhiacopxky ta có:
\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)
\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)
\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)
\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)
Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)
\(A_{\max}=5\Leftrightarrow x=y=1\)
Bài 4:
Lời giải:
\(B=\sqrt{x-1}+\sqrt{5-x}\)
\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)
Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)
Mặt khác \(B\geq 0\)
Kết hợp cả hai điều trên suy ra \(B\geq 2\)
Vậy \(B_{\min}=2\).
Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)
---------------------------------------
\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)
\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)
Vì \(x^2\geq 0\forall x\in\mathbb{R}\)
\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)
Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)
Vậy \(A_{\min}=2\Leftrightarrow x=0\)
cho \(x\ge-\dfrac{1}{3}\). tìm GTNN của \(E=5x-6\sqrt{2x+7}-4\sqrt{3x-1}+2\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6