CMR a=b=c=d
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
và a+b+c+d khác 0
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
Các số a, b, c, d thỏa mãn điều kiện a +b +c +d khác 0 và \(\frac{a}{3b}\) = \(\frac{b}{3c}\) = \(\frac{c}{3d}\) = \(\frac{d}{3a}\). Chứng tỏ rằng a = b = c = d
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\Rightarrow a=b=c=d\)
Các số a, , b , c , d thỏa mãn điều kiện :\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\) và a+ b + c + d \(\ne\)0 .
Chứng minh a = b =c =d
Ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)
\(=\frac{1}{3}\)
Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)
Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)
Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)
Vậy a = b = c = d ( Đpcm )
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,
Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana
Help me!
Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) ; a+b+c+d khác 0
Tính: \(Q=\frac{a-3b}{c+d}+\frac{b-3c}{a+d}+\frac{c-3d}{a+b}+\frac{d-3a}{b+c}\)
Kết quả là -4 đúng ko?Mk chỉ muốn kiểm tra mk làm đúng hay ko thôi!!! :)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a/b = 1 => a = b
b/c = 1 => b = c
c/d = 1 => c = d
d/a = 1 => d = a
=> a = b = c = d
=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ST Mk làm cách khác nhung cam on ban
Các số a,b,c,d thỏa mãn điều kiện
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và \(a+b+c+d\ne0\)