Tính:
A = \(\dfrac{37^3+12^3}{49}-37.12\)
B = \(\dfrac{52^3-48^3}{4}+52.48\)
Tính nhanh:
a) A=\(\dfrac{37^3+12^3}{49}\)-37.12
a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)
\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)
\(=37^2-2\cdot37\cdot12+12^2\)
\(=\left(37-12\right)^2\)
\(=25^2=625\)
Tính:
A = (37^3+12^3)/49-37*12
B = (52^3-48^3)/4+52*48
Tính :
a) A=373 + 123/49 - 37×12
b) B= 523 - 483/4 + 52×48
a: \(A=\dfrac{\left(37+12\right)\left(37^2+12^2-37\cdot12\right)}{49-37\cdot12}\)
\(=\dfrac{49\cdot1069}{49-37\cdot12}\simeq-132.61\)
b: \(=\dfrac{\left(52-48\right)\left(52^2+48^2+52\cdot48\right)}{4+52\cdot48}\)
\(=\dfrac{4\cdot7504}{4+52\cdot48}=\dfrac{7504}{625}\)
Tính:
a) \(\dfrac{3}{14}\) của -49;
b) \(\dfrac{3}{4}\) của \(\dfrac{-18}{25}\);
c) \(1\dfrac{2}{3}\) của \(3\dfrac{2}{9}\);
d) 40% của \(\dfrac{20}{9}\).
\(\dfrac{3}{14}\cdot\left(-49\right)=-\dfrac{21}{2}\)
\(\dfrac{3}{4}\cdot\dfrac{-18}{25}=-\dfrac{27}{50}\)
\(1\dfrac{2}{3}\cdot3\dfrac{2}{9}=\dfrac{29}{9}\cdot\dfrac{5}{3}=\dfrac{145}{27}\)
\(40\%\cdot\dfrac{20}{9}=\dfrac{40}{100}\cdot\dfrac{20}{9}=\dfrac{40}{45}=\dfrac{8}{9}\)
a, \(-49.\dfrac{3}{14}=-\dfrac{21}{2}\)
b, \(\dfrac{-18}{25}.\dfrac{3}{4}=-\dfrac{27}{50}\)
c, \(3\dfrac{2}{9}.1\dfrac{2}{3}=\dfrac{29}{9}.\dfrac{5}{3}=\dfrac{145}{27}\)
d, \(\dfrac{20}{9}.40\%=\dfrac{20}{9}.\dfrac{40}{100}=\dfrac{8}{9}\)
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50};B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính giá trị của \(\dfrac{A}{B}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
bài 1: thực hiện phép tính:
a) \(\dfrac{-5}{12}\) . \(\dfrac{4}{19}\) +\(\dfrac{-7}{12}\) . \(\dfrac{4}{19}\) -\(\dfrac{40}{57}\)
b) \(\dfrac{1}{3}\) .\(\dfrac{4}{5}\) +\(\dfrac{1}{3}\).1.\(\dfrac{1}{5}\) +( \(\dfrac{-3}{2}\) )^2
giúp em
a) −512−512 . 419419 +−712−712 . 419419 -40574057 Đầu tiên, chúng ta tính toán phép nhân: −512 x 419419 = -214,748,928 −712 x 419419 = -298,238,328
Tiếp theo, chúng ta tính tổng của hai kết quả: -214,748,928 + -298,238,328 = -513,987,256
Cuối cùng, chúng ta trừ đi 40574057: -513,987,256 - 40574057 = -554,561,313
Vậy kết quả của phép tính a là -554,561,313.
b) 1313 . 4545 + 1313.1.1515 + ( −32−32 )^2 Đầu tiên, chúng ta tính toán phép nhân: 1313 x 4545 = 5,964,385 1313 x 1.1515 = 1,511.195 −32 x −32 = 1,024
Tiếp theo, chúng ta tính tổng của ba kết quả: 5,964,385 + 1,511.195 + 1,024 = 5,966,920.195
Vậy kết quả của phép tính b là 5,966,920.195.
Tính:
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}\)
b) \(\dfrac{4}{3}\) + 5 x \(\dfrac{5}{8}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)x\dfrac{25}{29}\)
d) \(\dfrac{1}{4}x\dfrac{5}{12}+\dfrac{5}{12}x\dfrac{4}{5}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)
Rút gọn rồi tính:
a) \(\dfrac{8}{18}+\dfrac{5}{3}\) b) \(\dfrac{8}{24}+\dfrac{4}{48}\) c) \(\dfrac{20}{15}-\dfrac{4}{45}\) d) \(\dfrac{40}{32}-\dfrac{1}{2}\)
a: \(\dfrac{8}{18}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{15}{9}=\dfrac{4+15}{9}=\dfrac{19}{9}\)
b: \(\dfrac{8}{24}+\dfrac{4}{48}=\dfrac{1}{3}+\dfrac{1}{12}=\dfrac{4}{12}+\dfrac{1}{12}=\dfrac{4+1}{12}=\dfrac{5}{12}\)
c: \(\dfrac{20}{15}-\dfrac{4}{45}=\dfrac{4}{3}-\dfrac{4}{45}=\dfrac{60}{45}-\dfrac{4}{45}=\dfrac{60-4}{45}=\dfrac{56}{45}\)
d: \(\dfrac{40}{32}-\dfrac{1}{2}=\dfrac{5}{4}-\dfrac{1}{2}=\dfrac{5-2}{4}=\dfrac{3}{4}\)
Thực hiện phép tính:
a) (\(\dfrac{6}{\sqrt{3}}\) - 2\(\sqrt{48}\)) (\(\sqrt{3}\) - 1)
b) \(\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-3}\) - \(\sqrt{9-4\sqrt{5}}\)
c) 3\(\sqrt{2a}\) - \(\sqrt{18a^3}\) + 4\(\sqrt{\dfrac{a}{2}}\) - \(\dfrac{1}{4}\)\(\sqrt{128a}\) với a \(\ge\) 0
a: =(2căn 3-8căn 3)(căn 3-1)
=-6căn 3*(căn 3-1)
=-18+6căn 3
b: \(=\dfrac{6-2\sqrt{5}}{\sqrt{5}-3}-\sqrt{5}+2\)
=-2-căn 5+2=-căn 5
c: \(=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)
=\(3\sqrt{2a}-3a\cdot\sqrt{2a}\)
Hãy tính \(\dfrac{C}{D}\). Biết C= \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\) và D= \(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
=> D + 49 = (1/49 + 1) + (2/48 + 1) +... (49/1 + 1)
= 50/1 + 50/2 + ... + 50/49
= 50(1/2+1/3+...+1/49) + 50
=> D = 50(1/2 + 1/3 +... + 1/49) + 1
= 50(1/2 + 1/3 +... + 1/49 + 1/50)
=> C/D = 1/50