N=x-x3-4 giúp mk với ^^
Bài 2: Cho hai đa thức
f(x) = 3x + x3 + 2x2 + 4
g(x) = x3 + 3x + 1 – x2
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính f(x) + g(x) và f(x) – g(x)
c) Chứng tỏ f(x) – g(x) không có nghiệm
ai giúp mk với :)) mk cảm ơn !
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a)
F(x)=x3+2x2+3x+4F(x)=x3+2x2+3x+4
G(x)=x3−x2+3x+1
b)
F(x)+G(x)=2x3+x2+6x+5F(x)+G(x)=2x3+x2+6x+5
F(x)−G(x)=3x2+3
(2/3x4/5)x3/4
giúp mk với
\((\frac{2}{3}\times\frac{4}{5})\times\frac{3}{4}\)
\(=(\frac{2\times4}{3\times5})\times\frac{3}{4}\)
\(=\frac{8}{15}\times\frac{3}{4}=\frac{8\times3}{15\times4}=\frac{2\times1}{5\times1}=\frac{2}{5}\)
\(\left(\frac{2}{3}\times\frac{4}{5}\right)\times\frac{3}{4}\)
\(=\frac{8}{15}\times\frac{3}{4}\)
\(=\frac{2}{5}\times\frac{1}{1}\)
\(=\frac{2}{5}\)
Tìm số tự nhiên x
a) 2x = 6
b) 62x-1 = 216;
c) x3 = 25x;
d) (x +1)2 = 2.(x+1)
giúp mk với nhé
b: Ta có: \(6^{2x-1}=216\)
\(\Leftrightarrow2x-1=3\)
hay x=2
c: Ta có: \(x^3=25x\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Bài 4:
a) Cho x+y=1.Tính x3+y3+3xy
b) Cho x-y=1.Tính x3-y3-3xy
c) Cho x+y=1.Tính x3+y3+3xy(x2+y2)+6x2y2(x+y)
giúp mình với ,gấpppppppppppp
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
x3-3x2+3x-1
mọi người giúp mk với
x3+6x=4(x+2)\(\sqrt{x+2}\)-3x2
Giải giúp em với ạ
ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)
Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:
\(x^3+3xy^2-4y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)
\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))
\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x
vậy...
1. Tìm x ∈ N sao cho:
a) (x - 140) : 7 = 33 - 23 . 3
b) x3 . x2 = 28 : 23
c) (x + 2) . (x - 4) = 0
d) 3x-3 - 32 = 2 . 32
2. Tìm x ∈ N sao cho:
a) 9 : (x + 2)
b) (x + 17) : (x + 3)
Giúp mình với, mình cân gấp!
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
2.
a) 9 : ( x + 2 )
9 ⋮ 1 ; 9 ⋮ 3 ; 9 ⋮ 9
=> x = -1 ; 1 ; 7
Tìm x
a, ( -2x - 10 ) . ( x3 +216 ) . ( 144 - x2 ) = 0
b, 5 - ( 2x + 7 ) = 3 . ( -4 ) + 20
giúp mk zới ><, ai đúng mk t.i.c.k
Cho x1+x2+x3+...+x49+x50+x51=0 và x1+x2=x3+x4=...=x47+x48=x49+x50=x51+x52=1.
Tính x50.
giúp mk với nha!
$x_{52}$ ở đâu vậy bạn? Bạn xem lại đề.
(x+1) (x2+2x+4) -x3-3x2+16=0
Mn trl giúp em với ạ
\(pt\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\\ \Leftrightarrow6x+20=0\Leftrightarrow x=-\dfrac{20}{6}=\dfrac{-10}{3}\)
Vậy ........
\(pt\text{⇔}x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\text{⇔}6x+20=0\text{⇔}x=-\dfrac{10}{3}\)
Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)