A(x)=x5+3x3-x5+x-1
B(x)=3x3-2x2-1
a tìm bậc A(1) B(2)
b tính A(x)+B(x)
CHO 2 ĐA THỨC : A(x)= x5 - 2x4 + 5x -3 và B(x)= -x5 + 3x3 + 5x + 11 a, Tính A(2) và B(-1) b, Tính tổng A(x) + B(x) và hiệu A(x) - B(x) giúp mền với
a: \(A\left(2\right)=2^5-2\cdot2^4+5\cdot2-3=32-32+10-3=7\)
\(B\left(-1\right)=-\left(-1\right)^5+3\cdot\left(-1\right)^3+5\cdot\left(-1\right)+11=1-3-5+11=4\)
b: Ta có: A(x)+B(x)
\(=x^5-2x^4+5x-3-x^5+3x^3+5x+11\)
\(=-2x^4+3x^3+10x+8\)
Ta có: A(x)-B(x)
\(=x^5-2x^4+5x-3+x^5-3x^3-5x-11\)
\(=2x^5-2x^4-3x^3-14\)
Bài 1: Giải phương trình:
a) ( x+1)2 (x+2) + ( x – 1)2 ( x- 2) = 12
b) x4 + 3x3 + 4x2 + 3x + 1 = 0
c) x5 – x4 + 3x3 + 3x2 –x + 1 = 0
Bài 2: Chứng minh rằng các phương trình sau vô nghiệm
a) x4 – x3 + 2x2 – x + 1 = 0
b) x4 + x3 + x2 + x + 1 = 0
c) x4 – 2x3 +4x2 – 3x +2 = 0
d) x6+ x5+ x4 + x3 + x2 + x + 1 = 0
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
2.
a. \(x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+x^2-x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(vn\right)\\x^2-x+1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
b.
\(x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow x\left(x^3+1\right)+x^3+1+x^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)+x^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)+x^2=0\)
Mà \(\left\{{}\begin{matrix}\left(x+1\right)^2\left(x^2-x+1\right)\ge0\\x^2\ge0\end{matrix}\right.\)
Nên dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\) ko tồn tại x thỏa mãn
A(x) = 5x2 – 2x3 + 4x5 + 3x3 – 3x2 + 2x – 1 B(x) = – x 5 + 2x3 – 3x5 – 2x2 – 3x3 + 3x – 5
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến. Chỉ ra bậc của mỗi đa thức.
b) Tính C(x) = A(x) + B(x). c) Tính C( – 1). d) Tìm nghiệm của đa thức C(x).
Cho đa thức A(x) = -3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a) thu gọn đa thức và cho biết bậc của đa thức , hệ số cao cao nhất
b) Tìm biểu thức B(x) = A(x) . (x-1) . Sau đó tính giá trị B(x) tại x = 2
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
Bài 1 (1,5 điểm): Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức và cho biết bậc của đa thức, hệ số cao nhất
b, Tìm biểu thức B(x) = A(x). (x - 1). Sau đó tính giá trị B(x) tại x = 2 ( giúp em câu b vs ạ)
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
Giúp mình với ạ ^^
Cho các đa thức:
A(x) = 3x3 + 3x2 + 2x – 1
B(x) = 5x4 + 6x – 2x2 + 3x3 + 4 – 5x4 – 5x
a) Tìm bậc, hệ số tự do, hệ số cao nhất của A(x). Tính A (-2)
b) Thu gọn, sắp xếp đa thức B(x) theo lũy thừa giảm dần của biến
c) Tính A(x) – B(x)
d) Tìm đa thức C(x) biết C(x) – 2.B(x) = A(x)
a)
\(A\left(x\right)=3x^3+3x^2+2x-1\)
Bậc của A(x) là 3
Hệ số tự do A(x) là -1
Hệ số cao nhất của A(x) là 3
Tại A(-2)
\(A=3.\left(-2\right)^3+3.\left(-2\right)^2+2.\left(-2\right)-1\)
\(=-17\)
b)
\(B\left(x\right)=5x^4+6x-2x^2+4-5x^4-5x\)
\(=\left(5x^4-5x^4\right)+\left(-2x^2\right)+\left(6x-5x\right)+4\)
\(=-2x^2+x+4\)
c)
\(A\left(x\right)-B\left(x\right)=3x^3+3x^2+2x-1-\left(-2x^2+x+4\right)\)
\(=3x^3+3x^2+2x-1+2x^2-x-4\)
\(=3x^3+\left(3x^2+2x^2\right)+\left(2x-x\right)+\left(-1-4\right)\)
\(=3x^3+5x^2+x-5\)
d)
\(C\left(x\right)-2.\left(-2x^2+x+4\right)=3x^3+3x^2+2x-1\)
\(C\left(x\right)=3x^3+3x^2+2x-1+2.\left(-2x^2+x+4\right)\)
\(C\left(x\right)=3x^3+3x^2+2x-1-4x^2+2x+8\)
\(C\left(x\right)=3x^3+\left(3x^2-4x^2\right)+\left(2x+2x\right)+\left(-1+8\right)\)
\(C\left(x\right)=3x^3-x^2+4x+7\)
chúc bạn học giỏi
Cho đa thức A(x)= 2x-3x3+2x2+1 B(x)=4x3+2x2-5 tính A(x)+B(x) tính B(x) tại x=1 mình đang cần gấp giúp mình với
A(x)+B(x)=2x-3x3+2x2+1+4x3+2x2-5
= x3+4x2+2x-4
thay x=1 vào B(x) ta được
B(x)=4.13+2.13-5
=4+2-5
=1
\(A\left(x\right)+B\left(x\right)=\left(x+2\right)\left(x^2+2x-2\right)\)
thay x=1 \(=>A\left(1\right)+B\left(1\right)=3\left(1+2-2\right)=3\)
Ta có:
A(x)+B(x)=2x-3x³+2x²+1+4x³+2x²-5
=(-3x³+4x³)+(2x²+2x²)+2x+(1-5)
=x³+4x²+2x-4
Thay x=1 vào B(x) ta có:
B(1)=4*1³+2*1²-5
=4+2-5=1
Cho hai đa thức
A(x) = x5+ x3- 4x – x5 + 3x – x2 + 7
B(x) = 3x2 – x5 + 5x – 2x2 – 9
a) Thu gọn và sắp sếp A(x) và B(x) theo lũy thừa giảm dẫn của biến
b) Sác định bậc , hệ số cao nhất , hệ số tự do của A(x)
c) Tính A(x) + B(x) , A(x) – B(x) và tính nghiệm của A(x) + B(x)
d) Tìm đa thức H(x) sao cho H(x) – B(x) = x3 + x2– x + 1
`#Namnam041005`
`a)`
`A(x) =`\(x^5+ x^3- 4x - x^5 + 3x - x^2 + 7\)
`= (x^5 - x^5) + x^3 - x^2 + (-4x + 3x) + 7`
`= x^3 - x^2 - x + 7`
`B(x) = `\(3x^2 - x^5 + 5x - 2x^2 - 9\)
`= (3x^2 - 2x^2) - x^5 + 5x - 9`
`= -x^5 + x^2 + 5x - 9`
`b)`
`A(x)``= x^3 - x^2 - x + 7`
Bậc của đa thức: `3`
Hệ số cao nhất: `1`
Hệ số tự do: `7`
`c)`
`A(x) + B(x) = x^3 - x^2 - x + 7 -x^5 + x^2 + 5x - 9`
`= -x^5 + x^3 + (-x^2 + x^2) + (-x+5x) + (7-9)`
`= -x^5 + x^3 + 4x - 2`
`A(x) - B(x) = x^3 - x^2 - x + 7 - (-x^5 + x^2 + 5x - 9)`
`= x^3 - x^2 - x + 7 +x^5 - x^2 - 5x + 9`
`= x^5 + x^3 + (-x^2 - x^2) + (-x-5x) + (7+9)`
`= x^5 + x^3 - 2x^2 - 6x + 16`
___
`A(x) + B(x) = -x^5 + x^3 + 4x - 2=0`
Bạn xem lại đề
`d)`
`H(x) - B(x) = x^3 + x^2 - x + 1`
`=> H(x) = (x^3 + x^2 - x + 1) + B(x)`
`=> H(x) = x^3 + x^2 - x + 1 -x^5 + x^2 + 5x - 9`
`= -x^5 + x^3 + (x^2 + x^2) + (-x+5x) + (1 - 9)`
`= -x^5 + x^3 + 2x^2 + 4x - 8`
a: A(x)=x^5-x^5+x^3-x^2-4x+3x+7
=x^3-x^2-x+7
B(x)=-x^5+3x^2-2x^2+5x-9
=-x^5+x^2+5x-9
b: Bậc: 3
Hệ số cao nhất: 1
hệ số tự do: 7
c: A(x)+B(x)
=x^3-x^2-x+7-x^5+x^2+5x-9
=-x^5+x^3+4x-2
A(x)-B(x)
=x^3-x^2-x+7+x^5-x^2-5x+9
=x^5+x^3-2x^2-6x+16
d: H(x)=x^3+x^2-x+1+B(x)
=x^3+x^2-x+1-x^5+x^2+5x-9
=-x^5+x^3+2x^2+4x-8
Câu 1 (3,0 điểm): Tính
a) 3x2 (2x2 − 5x − 4)
b) (x + 1)2 + ( x − 2 )(x + 3 ) − 4x
c) (6 x5 y2 − 9 x4 y3 +12 x3 y4 ) : 3x3 y2
Câu 2 (4,0 điểm): Phân tích đa thức thành nhân tử
a) 7x2 +14xy b) 3x + 12 − (x2 + 4x)
c ) x2 − 2xy + y2 − z2 d) x2 − 2x −15
Câu 3 (0,5 điểm): Tìm x
a) 3x2 + 6x = 0 b) x (x − 1) + 2x − 2 = 0
Câu 4 (2,0 điểm): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh DE song song BF
b) Tứ giác DEBF là hình gì?
Câu 5 (0,5 điểm ):
Chứng minh rằng A= n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n ∈ N*
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
Bài 2
a) \(7x^2+14xy=7x\left(x+2y\right)\)
b) \(3x+12-\left(x^2+4x\right)=-x^2-x+12=\left(-x+3\right)\left(x+4\right)\)
c) \(x^2-2xy+y^2=\left(x-y\right)^2\)
d) \(x^2-2x-15=x^2+3x-5x-15=\left(x+3\right)\left(x-5\right)\)