xy+x+y=16
Cho xy =1 và x²y+xy²+x+y=16 . Tính x²+y²
Theo bài ra ta có:
\(x^2y+xy^2+x+y=\left(x^2y+xy^2\right)+x+y\)
\(=xy\left(x+y\right)+x+y=x+y+x+y\)
\(\Rightarrow2\left(x+y\right)=16\Rightarrow x+y=16\div2=8\)
\(\Rightarrow\left(x+y\right)^2=8^2=64\)
\(\Rightarrow x^2+2xy+y^2=64\)
\(\Rightarrow x^2+2+y^2=64\)
\(\Rightarrow x^2+y^2=64-2=62\)
Vậy \(x^2+y^2=62\)
\(x^2y+xy^2+x+y=16\)
\(\Leftrightarrow2x+2y=16\)
\(\Leftrightarrow x+y=8\)
Lại có\(x^2+y^2=\left(x+y\right)^2-2xy\)
\(=8^2-2\)
\(=62\)
Vậy\(x^2+y^2=62\)
Giả sử x=y
Nhân cả hai vế với x, ta được: x² = xy
Trừ cả hai vế cho y², ta được: x² - y² = xy - y²
Phân tích thành nhân tử cả hai vế, ta được: (x + y )( x - y ) = y( x – y )
Chia cả hai vế cho x - y, ta được: x + y = y
Vì x = y, do đó 2y = y
Chia cả hai vế cho y, ta có: 2 = 1
Có phải 2 = 1 không ? Tìm lỗi sai !
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
CHo \(x,y>0\) và xy=16 Tìm Min S\(=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)
\(S=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)
\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{16}{80}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right).16}{16\left(y+16\right).100.80}}=\dfrac{3x}{20}\)
\(tương\) \(tự\Rightarrow\dfrac{y^3}{16\left(x+16\right)}\ge\dfrac{3y}{20}\)
\(\Rightarrow S\ge\dfrac{3x}{20}+\dfrac{3y}{20}-\left(\dfrac{x+16}{100}+\dfrac{y+16}{100}\right)-2.\dfrac{16}{80}+\dfrac{2021}{2022}=\dfrac{3x+3y}{20}-\dfrac{x+y+32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{15x+15y-x-y-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{14\left(x+y\right)-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}\)
\(xy=16\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow x+y\ge8\Rightarrow S\ge\dfrac{14.8-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{2}{5}+\dfrac{2021}{2022}\)
\(\Rightarrow minS=\dfrac{2}{5}+\dfrac{2021}{2022}\Leftrightarrow x=y=4\)
\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{1}{5}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right)}{16.100.5\left(y+16\right)}}=\dfrac{3x}{20}\)
Tương tự: \(\dfrac{y^3}{16\left(x+16\right)}+\dfrac{x+16}{100}+\dfrac{1}{5}\ge\dfrac{3y}{20}\)
Cộng vế:
\(S+\dfrac{x+y+32}{100}+\dfrac{2}{5}\ge\dfrac{3\left(x+y\right)}{20}+\dfrac{2021}{2022}\)
\(S\ge\dfrac{9}{20}\left(x+y\right)-\dfrac{42}{25}+\dfrac{2021}{2022}\ge\dfrac{9}{20}.2\sqrt{xy}-\dfrac{42}{25}+\dfrac{2021}{2022}=...\)
Đề bài : Tìm x , y thuộc Z , biết :a) xy + x + 2y = 5b) xy - 3x - y = 0c)xy +2x +2y = -16
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
cho xy(x+y)=x^2-xy+y^2 chứng minh rằng 1/x^3+1/y^3<16
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+xy=\frac{16}{x}\\xy+y^2=\frac{16}{y}\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow\left\{{}\begin{matrix}x^3+x^2y=16\\y^3+xy^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3+x^2y-xy^2=0\\x^3+x^2y=16\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\Rightarrow x^3+x^2y=16\Leftrightarrow\left[{}\begin{matrix}x^3+x^3=16\\x^3-x^3=16\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\) (tm)
Tìm x;y
xy+x.3+y.3=-16
** Bổ sung điều kiện $x,y$ là số nguyên.
Lời giải:
Ta có:
$xy+3x+3y=-16$
$x(y+3)+3(y+3)=-16+9$
$(y+3)(x+3)=-7$
Với $x,y$ nguyên thì $x+3, y+3$ cũng là số nguyên.
Khi đó, ta có các TH sau:
TH1: $x+3=1, y+3=-7\Rightarrow x=-2; y=-10$
TH2: $x+3=-1, y+3=7\Rightarrow x=-4; y=4$
TH3: $x+3=-7, y+3=1\Rightarrow x=-10; y=-2$
TH4: $x+3=7, y+3=-1\Rightarrow x=4; y=-4$
Biết xy=16. Tìm gtnn của A=(√x+√y)/√xy