chứng minh
\(\sqrt{3}+\sqrt{8}+1< 6\)6
Chứng minh các đẳng thức sau:
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{2}\)
1)chứng minh
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=6\)
2)chứng minh
a)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)
b)\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=2\)
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
Ta có a) \(11+6\sqrt{2}=9+2\times3\times\sqrt{2}+2=\left(3+\sqrt{2}\right)^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
chứng minh
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\dfrac{-3}{2}\)
\(VT=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}\)
chứng minh
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\dfrac{-3}{2}\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{2^2.3}-\sqrt{6}}{2\sqrt{2}-2}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2-1}\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}=\sqrt{6}\left(\sqrt{\dfrac{1}{2}}-2\right).\dfrac{1}{\sqrt{6}}=\dfrac{1}{2}-2=\dfrac{-3}{2}=VP\left(đpcm\right)\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\dfrac{-3}{2}\)
\(vt=\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
=\(\left(\dfrac{\sqrt{6}}{2}-\dfrac{6\sqrt{6}}{3}\right).\dfrac{1}{\sqrt{6}}\)
=\(\dfrac{-9\sqrt{6}}{6}.\dfrac{1}{\sqrt{6}}=-\dfrac{3}{2}\)
\(vt=\dfrac{-3}{2}=vp\left(đpcm\right)\)
chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
Chứng minh rằng:
\(\sqrt{\dfrac{6\sqrt{3}-8}{2\sqrt{3}+1}}-\sqrt{3}=-1\)
\(A=\sqrt{\dfrac{6\sqrt{3}-8}{2\sqrt{3}+1}}=\sqrt{\dfrac{\left(6\sqrt{3}-8\right)\left(2\sqrt{3}-1\right)}{13}}=\sqrt{\dfrac{44-22\sqrt{3}}{11}}=\sqrt{4-2\sqrt{3}}\)\(A=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
\(A-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\) => cũng bt
Chứng minh
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh rằng: \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\frac{-3}{2}\)
có VT \(=\left(\frac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}-\frac{6\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}=\left(\frac{\sqrt{3}}{\sqrt{2}}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{-3\sqrt{3}}{\sqrt{2}}.\frac{1}{\sqrt{6}}=\frac{-3}{2}\)
dpcm
Ta có: \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
\(=\left\{\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}\right]-\frac{6\sqrt{6}}{3}\right\}\times\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right)\times\frac{1}{\sqrt{6}}\)
\(=\left(-\frac{3\sqrt{6}}{2}\right)\times\frac{1}{\sqrt{6}}\)
\(=\frac{-3}{2}\)(đpcm)
Chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1\)