Chứng minh rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
sửa đề câu 1 :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
sửa đề câu 2
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Giả sử \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(\Rightarrow100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)
\(\Rightarrow100=1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+...+\left(\frac{99}{100}+\frac{1}{100}\right)\)
\(\Rightarrow100=1+1+1+...+1\) (100 chữ số 1)
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{99}{100}\)
Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)
=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)
\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)
chứng minh rằng \(\frac{1}{1}-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-............-\frac{1}{100^2}< \frac{1}{100}\)
đầu bài sai bạn nhá, lớn hơn 1/100. Ta đi cm tổng những phân số có dấu âm > 1-1/100
Có: \(2^2>1.2 \Rightarrow\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
mấy cái kia tương tự suy ra tổng các p/s trong ngoặc < 1-1/100
=> vế trái>1-(1-1/100)=1/100
Chứng minh rằng:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
1/2+2/3+...+99/100=1-1/2+1-1/3+...+1-1/100=99-(1/2+1/3+,...+1/100)=100-(1+1/2+...+1/100)
chứng minh rằng:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=\frac{1}{2}+\frac{1}{3}+\frac{3}{4}+....+\frac{99}{100}\)
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\) ( ĐPCM )
Chứng minh rằng:
\(100-\left(1+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(100-\left(1+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=1+\left(1-1\right)+\left(1-\frac{1}{3}\right)+.......+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{2}{3}+......+\frac{99}{100}\left(DPCM\right)\)
chứng minh rằng:100-\(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\left(1-1\right)+\left(1-\frac{1}{2}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=0+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)
Để chứng minh 100 - \(\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\)
Thì ta cần chứng minh 100 = \(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)\)
Biến đổi
Vế phải = \(1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+....+\left(\frac{1}{100}+\frac{99}{100}\right)\)
= 1 + 1 + 1 + ...1 (100 số 1) = 100 = Vế trái (đpcm)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
Có phải ở sách NCPT ko bn
Bài 2: Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3B=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6B-2B=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4B=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4B=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4B=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4B=3-\frac{203}{3^{100}}< 3\)
\(B< \frac{3}{4}\left(đpcm\right)\)