tính 1+ \(\dfrac{6}{1+\dfrac{6}{1+\dfrac{6}{1+\dfrac{6}{1+..}}}}\)
Tính (theo mẫu).
Mẫu: \(2+\dfrac{1}{6}=\dfrac{12}{6}+\dfrac{1}{6}=\dfrac{13}{6};1-\dfrac{1}{4}=\dfrac{4}{4}-\dfrac{1}{4}=\dfrac{3}{4}\) |
a) \(1+\dfrac{4}{9}\) b) \(5+\dfrac{1}{2}\) c) \(3-\dfrac{5}{6}\) d) \(\dfrac{31}{7}-2\)
a) \(1+\dfrac{4}{9}=\dfrac{9}{9}+\dfrac{4}{9}=\dfrac{9+4}{9}=\dfrac{13}{9}\)
b) \(5+\dfrac{1}{2}=\dfrac{10}{2}+\dfrac{1}{2}=\dfrac{10+1}{2}=\dfrac{11}{2}\)
c) \(3-\dfrac{5}{6}=\dfrac{18}{6}-\dfrac{5}{6}=\dfrac{18-5}{6}=\dfrac{13}{6}\)
d) \(\dfrac{31}{7}-2=\dfrac{31}{7}-\dfrac{14}{7}=\dfrac{31-14}{7}=\dfrac{17}{7}\)
cho M= \(\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21},\)N = \(\dfrac{1}{20.23}+\dfrac{1}{23.26}+\dfrac{1}{26.29}+\dfrac{1}{29.31}\) tính tỉ số \(\dfrac{M}{N}\)
\(M=\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21}\)
\(\dfrac{1}{2}M=\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}+\dfrac{3}{19.21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{21}\)
\(M=\dfrac{11}{210}:\dfrac{1}{6}=\dfrac{11}{35}\)
\(N=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{20}-\dfrac{1}{30}\)
\(=\dfrac{1}{60}\)
\(\dfrac{M}{N}=\dfrac{11}{35}:\dfrac{1}{60}=\dfrac{132}{7}\)= \(\dfrac{132}{25}\)
1.tính
\(3\dfrac{1}{4}-2\dfrac{1}{3}=\)
\(6\dfrac{5}{9}+2\dfrac{5}{6}=\)
\(6\dfrac{5}{9}-2\dfrac{5}{6}=\)
Lời giải:
1.
$3\frac{1}{4}-2\frac{1}{3}=3+\frac{1}{4}-(2+\frac{1}{3})$
$=3-2+\frac{1}{4}-\frac{1}{3}$
$=1+\frac{1}{4}-\frac{1}{3}=\frac{5}{4}-\frac{1}{3}=\frac{11}{12}$
2.
$6\frac{5}{9}+2\frac{5}{6}=6+\frac{5}{9}+2+\frac{5}{6}=8+\frac{5}{6}+\frac{5}{9}=8+\frac{25}{18}=8+1+\frac{7}{18}=9+\frac{7}{18}=9\frac{7}{18}$
3.
$6\frac{5}{9}-2\frac{5}{6}=6+\frac{5}{9}-(2+\frac{5}{6})$
$=6+\frac{5}{9}-2-\frac{5}{6}$
$=(6-2)+\frac{5}{9}-\frac{5}{6}$
$=4+\frac{5}{9}-\frac{5}{6}=\frac{41}{9}-\frac{5}{6}=\frac{67}{8}$
Tính:
a) (6 : \(\dfrac{3}{5}\) \(1\dfrac{1}{6}\) x \(\dfrac{6}{7}\) ) : ( \(4\dfrac{1}{5}\) x \(\dfrac{10}{11}\) + \(5\dfrac{2}{11}\) )
b) (\(1-\dfrac{1}{2}\)) x (\(1-\dfrac{1}{3}\)) x (\(1-\dfrac{1}{4}\)) x ..... x (\(1-\dfrac{1}{2003}\)) x (\(1-\dfrac{1}{2007}\))
Tính theo cách thuận tiện :
\(\dfrac{13}{7}+\dfrac{5}{6}+\dfrac{2}{7}+\dfrac{7}{6}\) = ?
\(\dfrac{1}{2}x\dfrac{5}{6}+\dfrac{1}{2}x\dfrac{11}{6}=?\)
\(\dfrac{13}{7}+\dfrac{5}{6}+\dfrac{2}{7}+\dfrac{7}{6}=\dfrac{15}{7}+\dfrac{12}{6}=\dfrac{29}{7}\)
\(\dfrac{1}{2}\times\dfrac{5}{6}+\dfrac{1}{2}\times\dfrac{11}{6}=\dfrac{1}{2}\times\left(\dfrac{5}{6}+\dfrac{11}{6}\right)=\dfrac{1}{2}\times\dfrac{16}{6}=\dfrac{4}{3}\)
Bài 5: (Đề 2) Tính
a) \(2-1\dfrac{5}{6}+2\dfrac{2}{3}\)=........
b) \(\dfrac{5}{9}x\left(2\dfrac{5}{6}-1\dfrac{2}{3}\right)\)=..........
c)\(1\dfrac{1}{3}:\left(2+1\dfrac{1}{6}:2\dfrac{5}{6}\right)\)=..........
d) \(2\dfrac{3}{5}:\dfrac{3}{4}x1\dfrac{4}{5}\) =..........
` a/`
` 2 - 1 5/6 + 2 2/3 = 2 - 11/6 - 8/3 = 1/6+ 8/3 = 1/6 + 16/6 = 17/6 `
`b/`
`5/9 xx ( 2 5/6 - 1 2/3 ) = 5/9 xx ( 17/6 - 5/3 ) = 5/9 xx 7/6 = 35/54 `
`c/`
` 1 1/3 : ( 2 + 1 1/6 : 2 5/6 ) `
`= 4/3 : ( 2 + 7/6 : 17/6 ) `
`= 4/3 : ( 2 + 7/6 xx 6/17 )`
`= 4/3 : ( 2 + 7/17 ) `
`= 4/3 : ( 34/17 + 7/17 ) `
`= 4/3 : 41/17 `
`= 4/3 xx 17/41 `
`= 68/123`
` d/`
` 2 3/5 : 3/4 xx 1 4/5 = 13/5 xx 4/3 xx 9/5 =52/15 xx 9/5 = 156/25`
Tính:
\(a,\left(\dfrac{5}{12}-\dfrac{3}{4}\right).\dfrac{-6}{5}+\dfrac{-7}{6}\)
\(b,\left(5\dfrac{1}{2}-5\right)^2+\dfrac{-1}{6}:\dfrac{5}{3}\)
\(c,75\%-1\dfrac{1}{2}+0,5:\dfrac{5}{12}\)
Tính bằng cách thuận tiện nhất:
a)\(\dfrac{1}{5}+\dfrac{5}{9}+\dfrac{4}{5}+\dfrac{1}{9}+\dfrac{3}{9}\)
b)\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{4}{3}+\dfrac{2}{6}+\dfrac{2}{3}+\dfrac{5}{6}\)
giải giúp mình với !
a, \(=\dfrac{1+4}{5}+\dfrac{5+1+3}{9}=1+1=2\)
b, \(=\dfrac{1+4+2}{3}+\dfrac{1+2+5}{6}=\dfrac{6}{3}+\dfrac{8}{6}=2+\dfrac{4}{3}=\dfrac{6+4}{3}=\dfrac{10}{3}\)
\(tính:\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}\)
\(\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}-\dfrac{1}{6}\right)+\left(\dfrac{-1}{7}+\dfrac{1}{7}\right)+\dfrac{1}{8}\)
=0+0+0+0+0+0+\(\dfrac{1}{8}\)
=\(\dfrac{1}{8}\)