So sánh: \(\sqrt{3+\sqrt{2}}\) và \(\sqrt{5}\)
so sánh: \(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
và \(2+\sqrt{5}\)
Đặt:
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)
\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)
\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
Mà: \(4\sqrt{5}>1\)
Nên: \(A^2< B^2\)
\(\Rightarrow A< B\)
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
=>A^2=(căn 10)^2=10=9+1
Đặt B=2+căn 5
=>B^2=(2+căn 5)^2=9+4căn 5
1<4căn 5
=>9+1<9+4căn 5
=>A^2<B^2
=>A<B
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\Rightarrow A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=6+2\sqrt{9-5}=6+2.2=10\)
\(B=2+\sqrt{5}\Rightarrow B^2=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
\(>9+1=10=A^2\)
\(\Rightarrow B^2>A^2\Rightarrow B>A\)
Vậy, B>A
So sánh :
- 10 và \(-2\sqrt{31}\)
\(2\sqrt{3}\) - 5 và \(\sqrt{5}\) - 4
2 + \(\sqrt{5}\) và 3 + \(\sqrt{2}\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{2}\) + \(\sqrt{3}\) > 2
so sánh : a) \(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
b) \(\sqrt{21}-\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
So sánh M = \(\sqrt{2+\sqrt{5}}\) và N = \(\dfrac{\sqrt{5}+1}{\sqrt{3}}\)
So sánh : \(\dfrac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\dfrac{\sqrt{3}}{6}\)
SO SÁNH :
\(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
`@` `\text {Ans}`
`\downarrow`
`\sqrt {2} + \sqrt {11}` và `\sqrt {3} + 5`
Ta có: `5^2 = 25`
`=> \sqrt {25} = 5`
`=> \sqrt {3} + 5 = \sqrt {3} + \sqrt {25}`
Vì: \(\left\{{}\begin{matrix}\sqrt{3}>\sqrt{2}\\\sqrt{25}>\sqrt{11}\end{matrix}\right.\)
`=>`\(\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
`=> \sqrt {3} + 5 > \sqrt {2} + \sqrt {11}.`
`# \text {NgMH}`
(căn 2+căn 11)^2=13+2*căn 22
(căn 3+5)^2=28+2*căn 45
mà 13<28; căn 22<căn 45
nên căn 2+căn 11<căn 3+5
Bài 3: So sánh:
1) -3 và -5\(+\sqrt{5}\)
2)\(-4\) và \(-2\sqrt{5}\)
3) \(-3\sqrt{5}\)và -6
hộ mk nhé :>
\(1.-3< -5+\sqrt{5}\)
\(2.-4>-2\sqrt{5}\)
\(3.-3\sqrt{5}< -6\)
2) \(4=\sqrt{16}\)
\(2\sqrt{5}=\sqrt{20}\)
mà 16<20
nên \(-4>-2\sqrt{5}\)
3) \(3\sqrt{5}=\sqrt{45}\)
\(6=\sqrt{36}\)
mà 45>36
nên \(-3\sqrt{5}< -6\)
1)Ta có \(-3=-\sqrt{9}>-5+\sqrt{5}\)
2)Ta có \(-2\sqrt{5}=(-\sqrt{20})<-4=(-\sqrt{16})\)
3)Ta có \(-3\sqrt{5}=(-\sqrt{45})<-6=-\sqrt{36}\)