1, \(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6+\sqrt{6}}{\sqrt{6}}\)
2, \(\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)
3, \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
4, \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
5, \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\cdot\dfrac{1}{\sqrt{5}}\)
Rút gọn biểu thức :
\((5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}):2\sqrt{5}\) và \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
Câu 1: Rút gọn:
a) \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}\)
b) \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}\)
Câu 2: Giải phương trình:
\(\sqrt{9x^2-30x+25}=5\)
\(\dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}-\dfrac{2}{1-\sqrt{3}}\)
\(\dfrac{4}{\sqrt{6}+\sqrt{2}}-\dfrac{\sqrt{54}+\sqrt{2}}{\sqrt{3}+1}\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{20}{5+\sqrt{5}}-\sqrt{20}\)
Bài 2
\(\sqrt{25x^2-10x+1}=\sqrt{4x^2+8x+4}\)
\(\sqrt{x^2-3}+1=x\)
\(\sqrt{7-2x}=\sqrt{x^2+7}\)
\(\sqrt{9x-27}+\dfrac{1}{2}\sqrt{4x-12}-9\sqrt{\dfrac{x-3}{9}}=2\)
Tính giá trị các biểu thức sau
1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
2.\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+\dfrac{1}{5\sqrt{4}+4\sqrt{5}}+\dfrac{1}{6\sqrt{5}+5\sqrt{6}}+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\)
giúp mk vs ạ
Tính: ( Nhân cả tử lẫn mẫu với biểu thức liên hợp )
\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{6}+}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{6}+1}+1}\)
\(\dfrac{2\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{2}{\sqrt{6}+\sqrt{10}}\)